簡易檢索 / 詳目顯示

研究生: 林靖衛
Ching-Wei Lin
論文名稱: 碳六十終端分子自組裝在二氧化矽表面的製備與鑑定
Fabrication and characterization of C60-terminated SAM on SiO2 surface
指導教授: 洪偉修
Hung, Wei-Hsiu
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 94
中文關鍵詞: 碳六十富勒烯分子自組裝薄膜成長
英文關鍵詞: C60, fullerene, SAM, film growth
論文種類: 學術論文
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

分子自組裝技術(SAM)廣泛的應用於科學領域中,現今的有機場效電晶體廣泛的應用了分子自組裝技術,其中包括了絕緣層、功函數的調控以及分子自組裝場效電晶體等等。
在本研究主題中,我們經由少數化學修飾的步驟,成功的製造了高品質並以碳六十為終端的單層分子自組裝。表面的化學組成由X光光電子能譜儀來鑑定。而單層分子的品質,由原子力顯微鏡、接觸角量測、橢圓儀以及X光反射率來確認。
以碳六十為終端的單層分子自組裝由下列的幾個步驟完成:首先,將終端為溴的分子(ω-BHTS)自組裝到矽晶圓表面、將終端溴取代成疊氮以及碳六十稼接到疊氮形成aziridine。選擇十七個亞甲基團(methylene group)是為了能夠與OTS做比較。
最後,我們利用熱蒸鍍法將碳六十蒸鍍到下列製備的表面:乾淨的二氧化矽表面、氧電漿處理的二氧化矽表面、甲基團終端的分子自組裝、疊氮基團終端的分子自組裝以及碳六十基團終端的分子自組裝。經由改變表面的狀態,使得控制表面能變成可能。不同的成長機制,包括Volmer—Weber、Stranski—Krastanov 以及Frank—van-der-Merwe成長,都可分別在這些不同的表面中觀察的到。我們接著提出了碳六十分子在這些不同表面能的表面中,不同成長的機制。

The self-assembled monolayer (SAM) is a widely used technique in many scientific fields. The state-of-art manufacture of the organic field effect transistor includes large parts of the SAM technique such as insulator, work function tuning, SAMFET, etc. In this work, we successfully fabricated the well-controlled C60-terminated SAM on a SiO2 surface with a few steps of chemical modifications. The characterization of the chemical composition on surface was carried out with X-ray photoelectron spectroscopy (XPS). The structural and physical properties of the SAM monolayer were further examined with atomic force microscopy (AFM), contact angle (CA), ellipsometry, and X-ray reflectivity (XRR).
The synthesis of a C60-terminated SAM on a SiO2 surface was performed with several steps: the attachment of ω-BHTS and the subsequent substitutions of the terminal group (bromide and azide). The physical and chemical behaviors of the C60-terminated SAM were compared with those of the CH3-terminated SAM (octadecyltrichlorosilane, OTS).
Finally, a comparison was investigated for the thermal deposition of the C60 molecule on the surfaces with different adlayers including the as-grown SiO2, plasma-treated SiO2, CH3-terminated SAM, Br-terminated SAM, N3-terminated SAM, and C60-terminated SAM. The growth mechanisms of C60, such as Volmer-Weber, Stranski-Krastanov, and Frank-van-der-Merwe growths, were observed on these surfaces, depending on the terminal group. Accordingly, we concluded that the growth mechanism of C60 deposited on the surface was determined by the surface energy.

Abstract 1 摘要 2 Chapter 1 Introduction 6 Chapter 2 Principles 11 2.1 Reaction mechanisms of silane self-assembled monolayer 11 2.2 Kinetics of self-assembled monolayer 12 2.3 Thermodynamics of self-assembled monolayer 14 2.4 Chemical modification strategies 16 2.5 Chemical constitution identification of SAM 18 2.6 Crystallinity of the SAM 20 2.7 Surface (interface) roughness identification of SAM 21 2.8 Monolayer thickness determination 22 2.9 Measurement of wettability 25 2.10 SAM as organic electronics 27 2.10.1 Capacitor (Insulator) 28 2.10.2 metal-semiconductor(MS) junction 29 2.10.3 OFET (organic field effect transistor) 30 Chapter 3 Experimental 33 3.1 Synthesis 34 3.2 Self-assembled monolayer 35 3.3 Chemical modification on surface 36 3.4 Overall reaction processes 36 3.5 X-ray photoelectron spectroscopy (XPS) 37 3.6 Attenuated-total-reflection—infrared spectroscopy (ATR-IR) 37 3.7 Atomic force microscopy (AFM) 37 3.8 Spectroscopic Ellipsometry (SE) 38 3.9 X-ray reflectivity (XRR) 38 3.10 Contact angle (CA) measurement 38 3.11 Physical vapor deposition (PVD) 39 Chapter 4 Results and discussion 40 4.1 Synthesis of ω-BHTS 40 4.2 self-assembled monolayer 41 4.3 functional group substitution, Br → N3 42 4.3.1 solvent control 43 4.3.2 temperature control 45 4.3.3 time control 46 4.3.4 comparison of reported data 47 4.3.5 room temperature reaction of Br to N3 49 4.4 C60 attachment 49 4.5 ATR-IR 56 4.6 AFM 58 4.6.1 the concentration of SAM 58 4.6.2 surface roughness of ω-BHTS, N3-terminated SAM and C60-terminated SAM 60 4.7 Contact angle 62 4.7.1 Water contact angle 62 4.7.2 Critical surface tension 64 4.8 Ellipsometry 65 4.9 XRR 66 4.10 C60 Film growth 67 4.11 proposed mechanism of C60 thin film growth versus surface tension 71 4.11.1 high surface energy (plasma treated SiO2) relative to C60 71 4.11.2 slightly high surface energy (clean SiO2)relative to C60 71 4.11.3 comparative surface energy (C60, N3, Br-terminal) relative to C60 72 4.11.4 low surface energy (OTS) relative to C60 72 4.11.5 growth mechanisms and critical surface tensions 73 Chapter 5 Conclusion 74 Appendix A Standard clean process 76 Appendix B Chemicals 77 Appendix C Stain 78 Appendix D Solvent table 79 Appendix E Supplementary data 80 Appendix F Work function 93 Appendix G References 94

1 Aswal, D. K., Lenfant, S., Guerin, D., Yakhmi, J. V. & Vuillaume, D. Self assembled monolayers on silicon for molecular electronics. Anal. Chim. Acta 568, 84-108 (2006).
2 Lee, S., Ishizaki, T., Saito, N. & Takai, O. Effect of Reaction Temperature on Growth of Organosilane Self-Assembled Monolayers. Jpn. J. Appl. Phys. 47, 6442-6447 (2008).
3 Kobayashi, S. et al. Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nat. Mater. 3, 317-322 (2004).
4 London, G. et al. Light-driven altitudinal molecular motors on surfaces. Chem. Commun., 1712-1714 (2009).
5 Haensch, C., Hoeppener, S. & Schubert, U. S. Chemical surface reactions by click chemistry: coumarin dye modification of 11-bromoundecyltrichlorosilane monolayers. Nanotechnology 19, 7 (2008).
6 Vickerman, J. C. Surface analysis: The principal techniques. (WILEY, 1997).
7 Sze, S. M. & Ng, K. K. Physics of semiconductor devices. Third edn, (WILEY-INTERSCIENCE, 2007).
8 Davis, H. T. Statistical mechanics of phases, interfaces, and thin films. (VCH Publishers, Inc., 1996).
9 Pavia, D. L., Lampman, G. M. & Kriz, G. S. Introduction to Spectroscopy: A Guide for Students of Organic Chemistry. 3rd edn, (Brooks Cole, 2001).
10 User manual for the energy analyzer PhOIBOS 150.
11 Doudevski, I., Hayes, W. A. & Schwartz, D. K. Submonolayer island nucleation and growth kinetics during self-assembled monolayer formation. Physical Review Letters 81, 4927-4930 (1998).
12 Carraro, C., Yauw, O. W., Sung, M. M. & Maboudian, R. Observation of three growth mechanisms in self-assembled monolayers. Journal of Physical Chemistry B 102, 4441-4445 (1998).
13 Brzoska, J. B., Benazouz, I. & Rondelez, F. SILANIZATION OF SOLID SUBSTRATES - A STEP TOWARD REPRODUCIBILITY. Langmuir 10, 4367-4373 (1994).
14 Kagan, C. R. et al. Evaluations and considerations for self-assembled monolayer field-effect transistors. Nano Lett. 3, 119-124 (2003).
15 de Boer, B., Hadipour, A., Mandoc, M. M., van Woudenbergh, T. & Blom, P. W. M. Tuning of metal work functions with self-assembled monolayers. Adv. Mater. 17, 621-+ (2005).
16 Kwlatkowski, J. J., Frost, J. M. & Nelson, J. The Effect of Morphology on Electron Field-Effect Mobility in Disordered C60 Thin Films. Nano Lett. 9, 1085-1090 (2009).
17 Facchetti, A., Yoon, M. H. & Marks, T. J. Gate dielectrics for organic field-effect transistors: New opportunities for organic electronics. Adv. Mater. 17, 1705-1725 (2005).
18 Brzoska, J. B., Shahidzadeh, N. & Rondelez, F. EVIDENCE OF A TRANSITION-TEMPERATURE FOR THE OPTIMUM DEPOSITION OF GRAFTED MONOLAYER COATINGS. Nature 360, 719-721 (1992).
19 Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296-1323 (2007).
20 Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 65, 151-256 (2000).
21 Fontaine, P. et al. OCTADECYLTRICHLOROSILANE MONOLAYERS AS ULTRATHIN GATE INSULATING FILMS IN METAL-INSULATOR-SEMICONDUCTOR DEVICES. Appl. Phys. Lett. 62, 2256-2258 (1993).
22 Smits, E. C. P. et al. Bottom-up organic integrated circuits. Nature 455, 956-959 (2008).
23 Ruiz, R. et al. Pentacene thin film growth. Chem. Mat. 16, 4497-4508 (2004).
24 Shafrin, E. G. & Zisman, W. A. CONSTITUTIVE RELATIONS IN THE WETTING OF LOW ENERGY SURFACES AND THE THEORY OF THE RETRACTION METHOD OF PREPARING MONOLAYERS. J. Phys. Chem. 64, 519-524 (1960).
25 Singh, T. B. et al. Correlation of crystalline and structural properties of C-60 thin films grown at various temperature with charge carrier mobility. Appl. Phys. Lett. 90, 3 (2007).
26 Acton, O., Ting, G., Ma, H. & Jen, A. K. Y. Low-voltage high-performance C-60 thin film transistors via low-surface-energy phosphonic acid monolayer/hafnium oxide hybrid dielectric. Appl. Phys. Lett. 93, 3 (2008).
27 Anthopoulos, T. D. et al. High performance n-channel organic field-effect transistors and ring oscillators based on C-60 fullerene films. Appl. Phys. Lett. 89 (2006).
28 Schwartz, D. K., Steinberg, S., Israelachvili, J. & Zasadzinski, J. A. N. GROWTH OF A SELF-ASSEMBLED MONOLAYER BY FRACTAL AGGREGATION. Physical Review Letters 69, 3354-3357 (1992).
29 Bierbaum, K. et al. GROWTH OF SELF-ASSEMBLED N-ALKYLTRICHLOROSILANE FILMS ON SI(100) INVESTIGATED BY ATOMIC-FORCE MICROSCOPY. Langmuir 11, 2143-2150 (1995).
30 Bartelt, M. C. & Evans, J. W. SCALING ANALYSIS OF DIFFUSION-MEDIATED ISLAND GROWTH IN SURFACE-ADSORPTION PROCESSES. Phys. Rev. B 46, 12675-12687 (1992).
31 Parikh, A. N., Allara, D. L., Azouz, I. B. & Rondelez, F. AN INTRINSIC RELATIONSHIP BETWEEN MOLECULAR-STRUCTURE IN SELF-ASSEMBLED N-ALKYLSILOXANE MONOLAYERS AND DEPOSITION TEMPERATURE. J. Phys. Chem. 98, 7577-7590 (1994).
32 Snyder, R. G., Strauss, H. L. & Elliger, C. A. C-H STRETCHING MODES AND THE STRUCTURE OF NORMAL-ALKYL CHAINS .1. LONG, DISORDERED CHAINS. J. Phys. Chem. 86, 5145-5150 (1982).
33 Macphail, R. A., Strauss, H. L., Snyder, R. G. & Elliger, C. A. C-H STRETCHING MODES AND THE STRUCTURE OF NORMAL-ALKYL CHAINS .2. LONG, ALL-TRANS CHAINS. J. Phys. Chem. 88, 334-341 (1984).
34 Snyder, R. G. & Schachtschneider, J. H. VIBRATIONAL ANALYSIS OF THE N-PARAFFINS .1. ASSIGNMENTS OF INFRARED BANDS IN THE SPECTRA OF C3H8 THROUGH N-C19H40. Spectrochimica Acta 19, 85-116 (1963).
35 Snyder, R. G., Hsu, S. L. & Krimm, S. VIBRATIONAL-SPECTRA IN C-H STRETCHING REGION AND STRUCTURE OF POLYMETHYLENE CHAIN. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 34, 395-406 (1978).
36 Hill, I. R. & Levin, I. W. VIBRATIONAL-SPECTRA AND CARBON-HYDROGEN STRETCHING MODE ASSIGNMENTS FOR A SERIES OF NORMAL-ALKYL CARBOXYLIC-ACIDS. J. Chem. Phys. 70, 842-851 (1979).
37 Extrand, C. W. A thermodynamic model for contact angle hysteresis. J. Colloid Interface Sci. 207, 11-19 (1998).
38 Bredas, J. L., Beljonne, D., Coropceanu, V. & Cornil, J. Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: A molecular picture. Chem. Rev. 104, 4971-5003 (2004).
39 Effenberger, F. & Heid, S. SYNTHESIS OF MODEL COMPOUNDS FOR THE FORMATION OF SELF-ASSEMBLED MONOLAYERS ON A SILICON SURFACE. Synthesis, 1126-1130 (1995).
40 Balachander, N. & Sukenik, C. N. MONOLAYER TRANSFORMATION BY NUCLEOPHILIC-SUBSTITUTION - APPLICATIONS TO THE CREATION OF NEW MONOLAYER ASSEMBLIES. Langmuir 6, 1621-1627 (1990).
41 Tsukruk, V. V., Lander, L. M. & Brittain, W. J. ATOMIC-FORCE MICROSCOPY OF C60 TETHERED TO A SELF-ASSEMBLED MONOLAYER. Langmuir 10, 996-999 (1994).
42 Pichon, B. P., Man, M. W. C., Bied, C. & Moreau, J. J. E. A simple access to omega-aminoalkyltrialkoxysilanes: Tunable linkers for self-organised organosilicas. J. Organomet. Chem. 691, 1126-1130 (2006).
43 Fryxell, G. E. et al. Nucleophilic displacements in mixed self-assembled monolayers. Langmuir 12, 5064-5075 (1996).
44 Chechik, V., Crooks, R. M. & Stirling, C. J. M. Reactions and reactivity in self-assembled monolayers. Adv. Mater. 12, 1161-1171 (2000).
45 Ulman, A. An Introduction to Ultrathin Organic Films: From Langmuir--Blodgett to Self-Assembly. 442 (Academic Press, 1991).
46 Hirsch, A., Li, Q. Y. & Wudl, F. GLOBE-TROTTING HYDROGENS ON THE SURFACE OF THE FULLERENE COMPOUND C60H6(N(CH2CH2)2O)6. Angew. Chem.-Int. Edit. Engl. 30, 1309-1310 (1991).
47 Caldwell, W. B., Chen, K., Mirkin, C. A. & Babinec, S. J. SELF-ASSEMBLED MONOLAYER FILMS OF C(60) ON CYSTEAMINE-MODIFIED GOLD. Langmuir 9, 1945-1947 (1993).
48 Chen, K. M., Caldwell, W. B. & Mirkin, C. A. FULLERENE SELF-ASSEMBLY ONTO (MEO)3SI(CH2)3NH2-MODIFIED OXIDE SURFACES. J. Am. Chem. Soc. 115, 1193-1194 (1993).
49 Sahoo, R. R. & Patnaik, A. Binding of fullerene C-60 to gold surface functionalized by self-assembled monolayers of 8-amino-1-octane thiol: a structure elucidation. J. Colloid Interface Sci. 268, 43-49 (2003).
50 Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem.-Int. Edit. 40, 2004-+ (2001).
51 Binder, W. H. & Sachsenhofer, R. 'Click' chemistry in polymer and materials science. Macromol. Rapid Commun. 28, 15-54 (2007).
52 Prato, M., Li, Q. C., Wudl, F. & Lucchini, V. ADDITION OF AZIDES TO C-60 - SYNTHESIS OF AZAFULLEROIDS. J. Am. Chem. Soc. 115, 1148-1150 (1993).
53 Yang, C., Cho, S., Heeger, A. J. & Wudl, F. Heteroanalogues of PCBM: N-Bridged Imino-PCBMs for Organic Field-Effect Transistors. Angew. Chem.-Int. Edit. 48, 1592-1595 (2009).
54 Grosser, T., Prato, M., Lucchini, V., Hirsch, A. & Wudl, F. RING EXPANSION OF THE FULLERENE CORE BY HIGHLY REGIOSELECTIVE FORMATION OF DIAZAFULLEROIDS. Angew. Chem.-Int. Edit. Engl. 34, 1343-1345 (1995).
55 Yamamoto, H., Watanabe, T. & Ohdomari, I. A molecular simulation study of an organosilane self-assembled monolayer/SiO2 substrate interface. J. Chem. Phys. 128, 7 (2008).
56 Nanjo, M., Cyr, P. W., Liu, K., Sargent, E. H. & Manners, I. Donor-acceptor C-60-containing polyferrocenylsilanes: Synthesis, characterization, and applications in photodiode devices. Adv. Funct. Mater. 18, 470-477 (2008).
57 Banks, M. R. et al. AZIRIDINO[2',3'/1,2][60]FULLERENE. J. Chem. Soc.-Chem. Commun., 885-886 (1995).
58 Porter, M. D., Bright, T. B., Allara, D. L. & Chidsey, C. E. D. SPONTANEOUSLY ORGANIZED MOLECULAR ASSEMBLIES .4. STRUCTURAL CHARACTERIZATION OF NORMAL-ALKYL THIOL MONOLAYERS ON GOLD BY OPTICAL ELLIPSOMETRY, INFRARED-SPECTROSCOPY, AND ELECTROCHEMISTRY. J. Am. Chem. Soc. 109, 3559-3568 (1987).
59 Lenfant, S. Organic self-assembled monolayers for molecular diodes Ph. D. thesis, University of Science and Technology, (2001).
60 Giacalone, F. & Martin, N. Fullerene polymers: Synthesis and properties. Chem. Rev. 106, 5136-5190 (2006).
61 Kojio, K., Takahara, A., Omote, K. & Kajiyama, T. Molecular aggregation state of n-octadecyltrichlorosilane monolayers prepared by the Langmuir and chemisorption methods. Langmuir 16, 3932-3936 (2000).
62 Kojio, K., Tanaka, K., Takahara, A. & Kajiyama, T. Novel method to prepare organosilane monolayers on solid substrate. Bull. Chem. Soc. Jpn. 74, 1397-1401 (2001).
63 Mezger, M. et al. Water and ice in contact with octadecyl-trichlorosilane functionalized surfaces: A high resolution x-ray reflectivity study. J. Chem. Phys. 128, 13 (2008).
64 Marov, I. V. Crystal growth for beginners: Fundamentals of nucleation, crystal growth and epitaxy. (World Scientific publishing company, 1995).
65 Kern, W. Handbook of Semiconductor Wafer Cleaning Technology. (William Andrew Publishers).

無法下載圖示 本全文未授權公開
QR CODE