簡易檢索 / 詳目顯示

研究生: 江宥廷
You-Ting Jiang
論文名稱: 利用溶液法合成FeS2 奈米晶體並組裝光二極體異質接面作用於可見光到近紅外光的光偵測
Solution-processable pyrite FeS2 nanocrystals for the fabrication of heterojunction photodiodes with visible to NIR photodetection
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 48
中文關鍵詞: 二硫化鐵光二極體
英文關鍵詞: Iron Pyrite, Photodiode
論文種類: 學術論文
相關次數: 點閱:182下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,組裝以 ITO / ZnO / FeS2 NCs / MoO3 / Au的光二極體異質接面元件並以的二硫化鐵奈米晶體 (FeS2 NCs) 作為可見光 (Vis) 到近紅外光 (NIR) 的光偵測主動層,並利用氧化锌 (ZnO) 作為元件電洞阻擋層和三氧化鉬 (MoO3) 做為電洞提取層之研究。藉由金屬氧化層置入異質接面元件下,可以大幅抑制漏電流且減少元件的串聯電阻,在照射 A.M. 1.5 強度 100 mW/cm2 下,外電壓施予 -1 V 時可提供電流開關比值達 8000 的高整流比率光二極體。除此之外,此二硫化鐵奈米晶體異質接面元件可以在外加負偏壓下,對於可見光到近紅外光 ( 450 nm ~ 1150 nm ) 皆有光電流反應。在最後,我們呈現出以地球含量多且非毒性的二硫化鐵結合金屬氧化物層,所形成的異質接面光偵測元件,是有潛力能夠應用於近紅外光偵測器上。這個研究成果對於以二硫化鐵奈米晶體薄膜形成之光伏特元件中是相當重要的一環。

    In this thesis, this study demonstrates a FeS2 NCs as Visible to Near Infrared (NIR) active layers based heterojunction photodiode with a device ITO/ZnO/FeS2 NC/MoO3 /Au. Also, we used ZnO as the hole blocking layer and MoO3 as the hole extraction layer for the devices. The formation of FeS2 NCs heterojunction photodiode with satisfied band alignment by the insertion of metal oxide layers effectively suppresses the leakage current and reduces the serial resistance of the device, providing the photodiode with a high on/off ratio of up to 8000 at -1 V under A.M. 1.5 illumination (100 mW/cm2 ). Moreover, the FeS2 NCs heterojunction photodiode promised photoresponse from visble to near infrared (450 nm ~ 1150 nm) at negative bias voltage. In conclusion, the result of using the earth-abundant and non-toxic pyrite nanocrystals (FeS2) /metal oxides heterojunction photodiode device indicates its potential applications in infrared photodetector and has provided a crucial step toward the success in producing colloidal pyrite NCs thin films for low-cost and large-area photovoltaic.

    摘要 I Abstract II 謝誌 III 總目錄 IV 圖表目錄 VI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 第二章 儀器原理 8 2.1 X-光繞射分析儀 ( X-ray Diffraction, XRD ) 8 2.2 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM ) 8 2.3 掃瞄式電子顯微鏡 (Scanning Electron Microscopy, SEM ) 9 2.4 紫外光-可見光-近紅外光吸收光譜儀 10 2.5 旋轉塗佈機 (Spin Coater) 10 2.6 真空蒸鍍機 (Vacuum Evaporation) 11 2.7 射頻濺鍍機(RF Sputter) 12 2.8 光電子光譜儀 (Photoelectron Spectrometer, AC-2) 12 2.9 模擬光源及電流-電壓特性量測 ( J-V Characteristic 13 第三章 實驗 16 3.1 奈米晶體合成原理 16 3.2 實驗藥品與器材 17 3.3 奈米晶體合成實驗步驟 18 3.4 元件製程步驟 19 第四章 結果與討論 21 4.1 材料合成與分析 21 4.1.1二硫化鐵奈米晶體之製備 21 4.2 二硫化鐵 (FeS2) 奈米晶體於全無機異質接面光二極體元件上的應用 24 4.2.1 二硫化鐵奈米晶體 (FeS2 NCs) 薄膜性質與電性探討 24 4.2.2 以ITO / ZnO / FeS2 NCs / Au異質接面光二極體的結構對於不同厚度ZnO當電洞阻擋層的J-V特性探討 28 4.2.3 以ITO / ZnO / FeS2 NCs / MoO3 / Au異質接面光二極體的結構對於不同厚度MoO3當電洞提取層的J-V特性探討 33 4.2.4 以ITO / ZnO / FeS2 NCs / MoO3 / Au異質接面光二極體結構對於給予不同偏壓下對於外部量子效應與不同強度808 nm雷射光之分析 37 第五章 結論 41 第六章 未來展望 42 第七章 參考文獻 46

    1. Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Science 2005, 310, (5747), 462-465.
    2. Weiss, E. A.; Porter, V. J.; Chiechi, R. C.; Geyer, S. M.; Bell, D. C.; Bawendi, M. G.; Whitesides, G. M. J. Am. Chem. Soc. 2007, 130, (1), 83-92.
    3. Schreuder, M. A.; Xiao, K.; Ivanov, I. N.; Weiss, S. M.; Rosenthal, S. J. Nano Lett. 2010, 10, (2), 573-576.
    4. Koleilat, G. I.; Levina, L.; Shukla, H.; Myrskog, S. H.; Hinds, S.; Pattantyus-Abraham, A. G.; Sargent, E. H. ACS Nano 2008, 2, (5), 833-840.
    5. Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O.; Ellingson, R. J.; Nozik, A. J. Nano Lett. 2008, 8, (10), 3488-3492.
    6. Ma, W.; Luther, J. M.; Zheng, H.; Wu, Y.; Alivisatos, A. P. Nano Lett. 2009, 9, (4), 1699-1703.
    7. Nozik, A. J. Nano Lett. 2010, 10, (8), 2735-2741.
    8. McDonald, S. A.; Konstantatos, G.; Zhang, S.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Nat Mater 2005, 4, (2), 138-142.
    9. Rauch, T.; Boberl, M.; Tedde, S. F.; Furst, J.; Kovalenko, M. V.; Hesser, G.; Lemmer, U.; Heiss, W.; Hayden, O. Nat Photon 2009, 3, (6), 332-336.
    10. Sargent, E. H. Nat Photon 2009, 3, (6), 325-331.
    11. Choi, J. J.; Lim, Y.-F.; Santiago-Berrios, M. E. B.; Oh, M.; Hyun, B.-R.; Sun, L.; Bartnik, A. C.; Goedhart, A.; Malliaras, G. G.; Abruña, H. c. D.; Wise, F. W.; Hanrath, T. Nano Lett. 2009, 9, (11), 3749-3755.
    12. Wang, G.; Yang, X.; Qian, F.; Zhang, J. Z.; Li, Y. Nano Lett. 2010, 10, (3), 1088-1092.
    13. Clifford, J. P.; Konstantatos, G.; Johnston, K. W.; Hoogland, S.; Levina, L.; Sargent, E. H. Nat Nano 2009, 4, (1), 40-44.
    14. Altermatt, P. P.; Kiesewetter, T.; Ellmer, K.; Tributsch, H. Sol. Energy Mater. Sol. Cells 2002, 71, (2), 181-195.
    15. Wadia, C.; Alivisatos, A. P.; Kammen, D. M. Environmental Science & Technology 2009, 43, (6), 2072-2077.
    16. Ennaoui, A.; Fiechter, S.; Pettenkofer, C.; Alonso-Vante, N.; Büker, K.; Bronold, M.; Höpfner, C.; Tributsch, H. Sol. Energy Mater. Sol. Cells 1993, 29, (4), 289-370.
    17. Ennaoui, A.; Fiechter, S.; Goslowsky, H.; Tributsch, H. J. Electrochem. Soc. 1985, 132, (7), 1579-1582.
    18. Yun-Yue, L.; Di-Yan, W.; Hung-Chi, Y.; Hsuen-Li, C.; Chia-Chun, C.; Chun-Ming, C.; Chih-Yuan, T.; Chun-Wei, C. Nanotechnology 2009, 20, (40), 405207.
    19. Wilcoxon, J. P.; Newcomer, P. P.; Samara, G. A. Solid State Commun. 1996, 98, (6), 581-585.
    20. Wadia, C.; Wu, Y.; Gul, S.; Volkman, S. K.; Guo, J.; Alivisatos, A. P. Chem. Mater. 2009, 21, (13), 2568-2570.
    21. Bausch, S.; Sailer, B.; Keppner, H.; Willeke, G.; Bucher, E.; Frommeyer, G. Appl. Phys. Lett. 1990, 57, (1), 25-27.
    22. Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F.; Zhang, J. Z.; Hyeon, T. J. Am. Chem. Soc. 2003, 125, (36), 11100-11105.
    23. Yu, W. W.; Peng, X. Angew. Chem. Int. Ed. 2002, 41, (13), 2368-2371.
    24. Chen, X.; Wang, Z.; Wang, X.; Wan, J.; Liu, J.; Qian, Y. Inorg. Chem. 2005, 44, (4), 951-954.
    25. Duan, H.; Zheng, Y. F.; Dong, Y. Z.; Zhang, X. G.; Sun, Y. F. Mater. Res. Bull. 2004, 39, (12), 1861-1868.
    26. Klem, E. J. D.; Shukla, H.; Hinds, S.; MacNeil, D. D.; Levina, L.; Sargent, E. H. Appl. Phys. Lett. 2008, 92, (21), 212105.
    27. Klem, E. J. D.; MacNeil, D. D.; Levina, L.; Sargent, E. H. Adv. Mater. 2008, 20, (18), 3433-3439.
    28. Tauc, J. Mater. Res. Bull. 1968, 3, (1), 37-46.
    29. Willis, S. M.; Cheng, C.; Assender, H. E.; Watt, A. A. R. Nano Lett. 2012, 12, (3), 1522-1526.
    30. Gao, J.; Luther, J. M.; Semonin, O. E.; Ellingson, R. J.; Nozik, A. J.; Beard, M. C. Nano Lett. 2011, 11, (3), 1002-1008.
    31. Brown, P. R.; Lunt, R. R.; Zhao, N.; Osedach, T. P.; Wanger, D. D.; Chang, L.-Y.; Bawendi, M. G.; Bulović, V. Nano Lett. 2011, 11, (7), 2955-2961.
    32. Gao, J.; Perkins, C. L.; Luther, J. M.; Hanna, M. C.; Chen, H.-Y.; Semonin, O. E.; Nozik, A. J.; Ellingson, R. J.; Beard, M. C. Nano Lett. 2011, 11, (8), 3263-3266.
    33. Buker, K.; Alonso; x; Vante, N.; Tributsch, H. J. Appl. Phys. 1992, 72, (12), 5721-5728.
    34. Birkholz, M.; Fiechter, S.; Hartmann, A.; Tributsch, H. Physical Review B 1991, 43, (14), 11926-11936.
    35. Puthussery, J.; Seefeld, S.; Berry, N.; Gibbs, M.; Law, M. J. Am. Chem. Soc. 2010, 133, (4), 716-719.
    36. Bi, Y.; Yuan, Y.; Exstrom, C. L.; Darveau, S. A.; Huang, J. Nano Lett. 2011, 11, (11), 4953-4957.
    37. Yu, J.-T.; Wu, C.-J.; Huang, Y.-S.; Lin, S.-S. J. Appl. Phys. 1992, 71, (1), 370-375.
    38. Engström, M.; Vahtras, O.; Ågren, H. Chem. Phys. Lett. 2000, 328, (4–6), 483-491.

    QR CODE