簡易檢索 / 詳目顯示

研究生: 林娗瑜
Lin, Ding-Yu
論文名稱: 麩醯胺補充對於imiquimod誘導小鼠乾癬樣皮膚發炎之影響
Effects of glutamine supplementation on imiquimod-induced psoriasis-like dermatitis in mice
指導教授: 蔡帛蓉
Tsai, Po-Jung
侯又禎
Hou, Yu-Chen
口試委員: 陳玉華
Chen, Yue-Hwa
龔秀妮
Kung, Hsiu-Ni
蔡帛蓉
Tsai, Po-Jung
侯又禎
Hou, Yu-Chen
口試日期: 2022/07/14
學位類別: 碩士
Master
系所名稱: 營養科學碩士學位學程
Graduate Program of Nutrition Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 98
中文關鍵詞: 麩醯胺乾癬嗜中性白血球T細胞發炎
英文關鍵詞: glutamine, psoriasis, neutrophil, T cells, inflammation
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201540
論文種類: 學術論文
相關次數: 點閱:234下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乾癬(psoriasis)是一種自體免疫功能失調引起的慢性皮膚發炎疾病,其特徵是過度增生的角質細胞以及浸潤的T細胞、樹突細胞、巨噬細胞及嗜中性白血球,並對患者的生活品質有不良影響。乾癬的發病機制雖然尚未完全釐清,但已知T細胞在疾病的起始與發展階段扮演主要的致病因子之一。麩醯胺 (Glutamine;GLN) 具有抗氧化、抗發炎、免疫調節的作用,且乾癬患者血漿及血清中麩醯胺顯著較低。因此,本研究使用imiquimod (IMQ)誘發小鼠乾癬樣皮膚炎的動物模式,探討飲食中補充麩醯胺對於乾癬的保護效果。本實驗將雄性C57BL/6J小鼠隨機分為三組 (n=8/組):控制 (NC)組、IMQ誘發乾癬 (P)組、IMQ誘導並補充GLN (PG)組。NC組和P組所有小鼠給予AIN-93G飼料,PG組則於飼料中添加麩醯胺 (GLN取代30%總胺基酸氮含量),經15天餵養後,連續6天以Aldara乳膏 (5% IMQ) 塗抹於P組及PG組小鼠背部皮膚誘發乾癬樣皮膚炎,誘發期間持續給予飼料介入麩醯胺。實驗結果發現,與NC組相比,P組小鼠背部皮膚出現紅斑、脫屑、增厚等典型乾癬樣皮膚炎反應,且呈現更高的乾癬面積暨嚴重程度指數(psoriasis area severity index , PASI),以及血液中嗜中性白血球、促發炎單核球、抗發炎單核球、T細胞、輔助型T細胞17 (helper T cell 17, Th17) 及調節型T細胞比例顯著提升。將P組和PG組做比較,發現飼料中補充麩醯胺可顯著降低IMQ誘導的乾癬嚴重程度的PASI指數、血中嗜中性白血球及Th17細胞比例。補充麩醯胺可顯著降低IMQ誘發的背部皮膚之嗜中性白血球比例與促發炎因子如interleukin (IL)-17A、IL-23、C-X-C motif chemokine ligand 1的mRNA表現量。在組織學方面觀察到補充麩醯胺降低了IMQ誘導引起的表皮增厚,降低角質層的厚度、減少角化不全及角化過度;免疫化學染色方面觀察到,補充麩醯胺降低了皮膚中T細胞及嗜中性白血球的浸潤。綜合上述結果推論,飲食補充GLN能可藉由調節Th17細胞比例、降低發炎激素及趨化因子的表現量,而改善IMQ誘導小鼠乾癬樣皮膚發炎反應。

    Psoriasis is an immune-mediated chronic inflammatory skin disease characterized by hyperproliferative keratinocytes and infiltration of T cells, dendritic cells, macrophages and neutrophils, which has great negative impact on patients’ quality of life. Although the pathogenesis of psoriasis is not fully understood, there is evidence suggesting that T cells play a dominant pathogenic role in the initiation and development of psoriasis. Glutamine (GLN) possesses antioxidant, anti-inflammatory, and immunoregulatory properties. Glutamine has been found at lower levels in the serum and plasma of psoriasis patients. Therefore, we conducted imiquimod (IMQ)-induced psoriasis-like mouse model to explore the protective role of GLN in psoriasis. Thirty male C57BL/6J mice were randomly divided into three groups (n=10 in each group): the normal control (NC), IMQ-induced psoriasis (P), and IMQ-induced psoriasis with glutamine supplementation (PG) group. All animals in the NC and P groups were fed an AIN-93 semi-purified diet, while PG group received a semi-purified diet that casein was replaced by Gln, which provided 30% of total amino acid nitrogen. Three groups were fed the respective diets for 15 days, and then P and PG group were topical treated for 6 days with Aldara cream (5% IMQ) to induce psoriasis-like dermatitis. Results showed that the P group emerged typical psoriasis-like inflammatory responses on back, such as erythema, scaling and thickening, and exerted higher psoriasis area severity index (PASI) scores, increased percentage of neutrophils, inflammatory monocyte, anti-inflammatory monocyte, T cells, T helper (Th)17 cells, and regulatory T (Treg) cells in blood, as compared to NC group. GLN supplementation significantly reduced IMQ-induced PASI scores, and the percentage of neutrophils and Th17 cells in blood. GLN supplementation also significantly reduced the percentage of neutrophils and the mRNA levels of proinflammatory mediators (interleukin (IL)-17A, IL-23, C-X-C motif chemokine ligand 1) in the back skin by IMQ induction. Besides, the results of histological observation indicated GLN decreased IMQ-induced epidermal hyperplasia, thinning of the stratum corneum, parakeratosis, and hyperkeratosis. In conclusion, these results suggested that dietary GLN supplementation alleviates IMQ-induced psoriatic inflammation by modulating the percentage of Th17 in the blood, reducing the expression of inflammatory mediator and chemokines.

    中文摘要I AbstractIII 致謝V 目錄VI 圖目錄IX 表目錄XI 縮寫表XII 第一章、文獻回顧1 第一節、皮膚與免疫系統1 一、皮膚構造1 二、皮膚免疫系統4 第二節、乾癬9 一、背景介紹9 二、免疫細胞與乾癬10 三、乾癬動物模式14 四、乾癬的治療與藥物使用17 五、乾癬的照護與飲食介入和膳食補充劑 (Dietary Intervention and Supplements in the Management of Psoriasis)19 第三節、麩醯胺 (glutamine)21 一、GLN之生理與代謝21 二、GLN與免疫調節22 二、GLN與發炎反應24 四、GLN與發炎性皮膚疾病24 第二章、研究動機與目的26 第三章、材料與方法27 第一節、所使用之藥品與儀器27 第二節、實驗動物31 第三節、實驗設計31 第四節、採集組織檢體35 一、血液35 二、器官組織35 第五節、分析項目與方法36 一、血液36 二、背部皮膚40 三、脾臟46 第六節、統計分析52 第四章、實驗結果53 第一節、GLN攝取對小鼠皮膚局部發炎反應影響53 一、小鼠皮膚外觀變化與PASI評分53 二、背部皮膚損傷情形與表皮層增厚55 三、背部皮膚中T細胞比例59 四、皮膚中白血球比例61 五、背部皮膚促發炎細胞激素、趨化因子及TLR7之mRNA表現量63 第二節、GLN攝取對小鼠全身性發炎反應影響65 一、脾臟/體重比值65 二、血液中白血球比例66 三、血液中淋巴球比例67 四、血液中CD4+ T細胞比例68 五、脾臟中T細胞相關mRNA表現量69 第三節、小鼠體重變化與GLN攝取量70 一、體重70 二、飼料攝取量變化71 三、GLN攝取量變化72 第四節、實驗結果整理73 第五章、討論74 第一節、IMQ誘導小鼠乾癬樣皮膚炎之特徵74 第二節、GLN補充減緩小鼠皮膚發炎反應及損傷75 第三節、GLN補充對於小鼠先天性免疫細胞之影響77 第四節、GLN補充對於小鼠適應性免疫細胞之影響79 第六章、結論82 第七章、參考文獻83

    賴明德等合著(2014)。新編人體解剖學 Current human anatomy。臺中市:華格那企業
    Abboud, K. Y., Reis, S. K., Martelli, M. E., Zordão, O. P., Tannihão, F., de Souza, A. Z. Z., Assalin, H. B., Guadagnini, D., Rocha, G. Z., & Saad, M. J. A. (2019). Oral glutamine supplementation reduces obesity, pro-inflammatory markers, and improves insulin sensitivity in DIO wistar rats and reduces waist circumference in overweight and obese humans. Nutrients, 11(3), 536.
    Abdallah, F., Mijouin, L., & Pichon, C. (2017). Skin immune landscape: inside and outside the organism. Mediators of inflammation, 2017.
    Afshar, M., & Gallo, R. L. (2013). Innate immune defense system of the skin. Veterinary dermatology, 24(1), 32-e39.
    Akbaraly, T. N., Shipley, M. J., Ferrie, J. E., Virtanen, M., Lowe, G., Hamer, M., & Kivimaki, M. (2015). Long-term adherence to healthy dietary guidelines and chronic inflammation in the prospective Whitehall II study. The American journal of medicine, 128(2), 152-160. e154.
    Alvarez, P., & Jensen, L. E. (2016). Imiquimod treatment causes systemic disease in mice resembling generalized pustular psoriasis in an IL-1 and IL-36 dependent manner. Mediators of inflammation, 2016.
    Araujo, L., Khim, P., Mkhikian, H., Mortales, C.-L., & Demetriou, M. (2017). Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. Elife, 6, e21330.
    Armstrong, A. W., Mehta, M. D., Schupp, C. W., Gondo, G. C., Bell, S. J., & Griffiths, C. E. (2021). Psoriasis prevalence in adults in the United States. JAMA dermatology, 157(8), 940-946.
    Armstrong, A. W., & Read, C. (2020). Pathophysiology, clinical presentation, and treatment of psoriasis: a review. Jama, 323(19), 1945-1960.
    Armstrong, A. W., Wu, J., Johnson, M. A., Grapov, D., Azizi, B., Dhillon, J., & Fiehn, O. (2014). Metabolomics in psoriatic disease: pilot study reveals metabolite differences in psoriasis and psoriatic arthritis. F1000Research, 3.
    Ashcroft, F. J., Mahammad, N., Midtun Flatekvål, H., J. Feuerherm, A., & Johansen, B. (2020). cPLA2α enzyme inhibition attenuates inflammation and keratinocyte proliferation. Biomolecules, 10(10), 1402.
    Auffray, C., Fogg, D., Garfa, M., Elain, G., Join-Lambert, O., Kayal, S., Sarnacki, S., Cumano, A., Lauvau, G., & Geissmann, F. (2007). Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science, 317(5838), 666-670.
    Ayush, O., Jin, Z. W., Kim, H.-K., Shin, Y.-R., Im, S.-Y., & Lee, H.-K. (2016). Glutamine up-regulates MAPK phosphatase-1 induction via activation of Ca2+→ ERK cascade pathway. Biochemistry and biophysics reports, 7, 10-19.
    Badanthadka, M., D’Souza, L., & Salwa, F. (2021). Strain specific response of mice to IMQ-induced psoriasis. Journal of Basic and Clinical Physiology and Pharmacology, 32(5), 959-968.
    Balato, N., Di Costanzo, L., Patruno, C., Patrì, A., & Ayala, F. (2013). Effect of weather and environmental factors on the clinical course of psoriasis. Occupational and environmental medicine, 70(8), 600-600.
    Balato, N., Napolitano, M., Ayala, F., Patruno, C., Megna, M., & Tarantino, G. (2015). Nonalcoholic fatty liver disease, spleen and psoriasis: New aspects of low-grade chronic inflammation. World Journal of Gastroenterology: WJG, 21(22), 6892.
    Baliwag, J., Barnes, D. H., & Johnston, A. (2015). Cytokines in psoriasis. Cytokine, 73(2), 342-350.
    Baroni, A., Buommino, E., De Gregorio, V., Ruocco, E., Ruocco, V., & Wolf, R. (2012). Structure and function of the epidermis related to barrier properties. Clinics in dermatology, 30(3), 257-262.
    Barrea, L., Balato, N., Di Somma, C., Macchia, P. E., Napolitano, M., Savanelli, M. C., Esposito, K., Colao, A., & Savastano, S. (2015). Nutrition and psoriasis: is there any association between the severity of the disease and adherence to the Mediterranean diet? Journal of translational medicine, 13(1), 1-10.
    Barrea, L., Di Somma, C., Muscogiuri, G., Tarantino, G., Tenore, G. C., Orio, F., Colao, A., & Savastano, S. (2018). Nutrition, inflammation and liver-spleen axis. Critical Reviews in Food Science and Nutrition, 58(18), 3141-3158.
    Behfar, S., Hassanshahi, G., Nazari, A., & Khorramdelazad, H. (2018). A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine, 110, 226-231.
    Bejarano, J. J. R., & Valdecantos, W. C. (2013). Psoriasis as autoinflammatory disease. Dermatologic clinics, 31(3), 445-460.
    Bernatchez, S. F., & Bichel, J. (2022). The science of skin: measuring damage and assessing risk. Advances in Wound Care(ja).
    Bhatia, B. K., Millsop, J. W., Debbaneh, M., Koo, J., Linos, E., & Liao, W. (2014). Diet and psoriasis, part II: celiac disease and role of a gluten-free diet. Journal of the American Academy of Dermatology, 71(2), 350-358.
    Blauvelt, A., & Chiricozzi, A. (2018). The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clinical reviews in allergy & immunology, 55(3), 379-390.
    Boehncke, W.-H. (2018). Systemic inflammation and cardiovascular comorbidity in psoriasis patients: causes and consequences. Frontiers in immunology, 9, 579.
    Boehncke, W. H., & Schön, M. P. (2015). Psoriasis. Lancet, 386(9997), 983-994.
    Brasse-Lagnel, C. G., Lavoinne, A. M., & Husson, A. S. (2010). Amino acid regulation of mammalian gene expression in the intestine. Biochimie, 92(7), 729-735.
    Brasse‐Lagnel, C., Lavoinne, A., & Husson, A. (2009). Control of mammalian gene expression by amino acids, especially glutamine. The FEBS journal, 276(7), 1826-1844.
    Cai, Y., Fleming, C., & Yan, J. (2012). New insights of T cells in the pathogenesis of psoriasis. Cellular & molecular immunology, 9(4), 302-309.
    Cai, Y., Shen, X., Ding, C., Qi, C., Li, K., Li, X., Jala, V. R., Zhang, H.-g., Wang, T., & Zheng, J. (2011). Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity, 35(4), 596-610.
    Calleja-Agius, J., Muscat-Baron, Y., & Brincat, M. P. (2007). Skin ageing. Menopause international, 13(2), 60-64.
    Carr, E. L., Kelman, A., Wu, G. S., Gopaul, R., Senkevitch, E., Aghvanyan, A., Turay, A. M., & Frauwirth, K. A. (2010). Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. The Journal of Immunology, 185(2), 1037-1044.
    Carroll, J. M., Crornpton, T., Seery, J. P., & Watt, F. M. (1997). Transgenic mice expressing IFN-γ in the epidermis have eczema, hair hypopigmentation, and hair loss. Journal of investigative dermatology, 108(4), 412-422.
    Chan, J. R., Blumenschein, W., Murphy, E., Diveu, C., Wiekowski, M., Abbondanzo, S., Lucian, L., Geissler, R., Brodie, S., & Kimball, A. B. (2006). IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2–dependent mechanisms with implications for psoriasis pathogenesis. The Journal of experimental medicine, 203(12), 2577-2587.
    Chang, W., Yang, K., & Shaio, M. (1999). Lymphocyte proliferation modulated by glutamine: involved in the endogenous redox reaction. Clinical & Experimental Immunology, 117(3), 482-488.
    Chen, C., Hou, G., Zeng, C., Ren, Y., Chen, X., & Peng, C. (2021). Metabolomic profiling reveals amino acid and carnitine alterations as metabolic signatures in psoriasis. Theranostics, 11(2), 754.
    Chen, Y., Hu, Y., Zhou, X., Zhao, Z., Yu, Q., Chen, Z., Wang, Y., Xu, P., Yu, Z., & Guo, C. (2022). Human umbilical cord-derived mesenchymal stem cells ameliorate psoriasis-like dermatitis by suppressing IL-17-producing γδ T cells. Cell and Tissue Research, 388(3), 549-563.
    Chiu, H.-Y., Wang, T.-S., Chen, P.-H., Hsu, S.-H., Tsai, Y.-C., & Tsai, T.-F. (2018). Psoriasis in Taiwan: From epidemiology to new treatments. Dermatologica Sinica, 36(3), 115-123.
    Cho, K.-A., Park, M., Kim, Y.-H., Ryu, K.-H., & Woo, S.-Y. (2017). Mesenchymal stem cells inhibit RANK-RANKL interactions between osteoclasts and Th17 cells via osteoprotegerin activity. Oncotarget, 8(48), 83419.
    Cho, K.-A., Suh, J. W., Lee, K. H., Kang, J. L., & Woo, S.-Y. (2012). IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of IL-1β by keratinocytes via the ROS-NLRP3-caspase-1 pathway. International immunology, 24(3), 147-158.
    Chu, C.-C., Hou, Y.-C., Pai, M.-H., Chao, C.-J., & Yeh, S.-L. (2012). Pretreatment with alanyl-glutamine suppresses T-helper-cell-associated cytokine expression and reduces inflammatory responses in mice with acute DSS-induced colitis. The Journal of Nutritional Biochemistry, 23(9), 1092-1099.
    Clark, R. A. (2010). Skin-resident T cells: the ups and downs of on site immunity. Journal of investigative dermatology, 130(2), 362-370.
    Clark, R. A., Chong, B., Mirchandani, N., Brinster, N. K., Yamanaka, K.-i., Dowgiert, R. K., & Kupper, T. S. (2006). The vast majority of CLA+ T cells are resident in normal skin. The Journal of Immunology, 176(7), 4431-4439.
    Cronkite, D. A., & Strutt, T. M. (2018). The regulation of inflammation by innate and adaptive lymphocytes. Journal of Immunology Research, 2018.
    Cruzat, V., Macedo Rogero, M., Noel Keane, K., Curi, R., & Newsholme, P. (2018). Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients, 10(11), 1564.
    Cruzat, V. F., Krause, M., & Newsholme, P. (2014). Amino acid supplementation and impact on immune function in the context of exercise. Journal of the international Society of Sports Nutrition, 11(1), 61.
    Cruzat, V. F., & Tirapegui, J. (2009). Effects of oral supplementation with glutamine and alanyl-glutamine on glutamine, glutamate, and glutathione status in trained rats and subjected to long-duration exercise. Nutrition, 25(4), 428-435.
    Danno, K., & Sugie, N. (1998). Combination therapy with low‐dose etretinate and eicosapentaenoic acid for psoriasis vulgaris. The Journal of dermatology, 25(11), 703-705.
    de Oliveira, D. C., da Silva Lima, F., Sartori, T., Santos, A. C. A., Rogero, M. M., & Fock, R. A. (2016). Glutamine metabolism and its effects on immune response: molecular mechanism and gene expression. Nutrire, 41(1), 1-10.
    Deng, Y., Chang, C., & Lu, Q. (2016). The inflammatory response in psoriasis: a comprehensive review. Clinical reviews in allergy & immunology, 50(3), 377-389.
    Di Cesare, A., Di Meglio, P., & Nestle, F. O. (2009). The IL-23/Th17 axis in the immunopathogenesis of psoriasis. Journal of investigative dermatology, 129(6), 1339-1350.
    Egawa, G., & Kabashima, K. (2020). Role of lymphoid structure in skin immunity. Inducible Lymphoid Organs, 65-82.
    Estruch, R., Ros, E., & Martínez-González, M. A. (2013). Mediterranean diet for primary prevention of cardiovascular disease. The New England journal of medicine, 369(7), 676-677.
    Farci, F., & Mahabal, G. D. (2021). Hyperkeratosis. In StatPearls [Internet]. StatPearls Publishing.
    Fetter, T., Niebel, D., Braegelmann, C., & Wenzel, J. (2020). Skin-associated B cells in the pathogenesis of cutaneous autoimmune diseases—implications for therapeutic approaches. Cells, 9(12), 2627.
    Finkelman, F., Lees, A., & Morris, S. (1992). Antigen presentation by B lymphocytes to CD4+ T lymphocytes in vivo: importance for B lymphocyte and T lymphocyte activation. Seminars in immunology,
    Flutter, B., & Nestle, F. O. (2013). TLRs to cytokines: mechanistic insights from the imiquimod mouse model of psoriasis. European journal of immunology, 43(12), 3138-3146.
    Furue, K., Ito, T., Tsuji, G., Nakahara, T., & Furue, M. (2020). The CCL20 and CCR6 axis in psoriasis. Scandinavian journal of immunology, 91(3), e12846.
    Furue, M., Furue, K., Tsuji, G., & Nakahara, T. (2020). Interleukin-17A and keratinocytes in psoriasis. International Journal of Molecular Sciences, 21(4), 1275.
    Gaies, E., Jebabli, N., Trabelsi, S., Salouage, I., Charfi, R., Lakhal, M., & Klouz, A. (2012). Methotrexate side effects: review article. J Drug Metab Toxicol, 3(4), 1-5.
    GAáL, J., Lakos, G., Szodoray, P., Kiss, J., HORVáTH, I., Horkay, E., NAGy, G., & SzEGEDI, A. (2009). Immunological and clinical effects of alphacalcidol in patients with psoriatic arthropathy: results of an open, follow-up pilot study. Acta dermato-venereologica, 89(2), 140-144.
    Gao, J., Chen, F., Fang, H., Mi, J., Qi, Q., & Yang, M. (2020). Daphnetin inhibits proliferation and inflammatory response in human HaCaT keratinocytes and ameliorates imiquimod-induced psoriasis-like skin lesion in mice. Biological research, 53.
    Gao, M., Monian, P., Quadri, N., Ramasamy, R., & Jiang, X. (2015). Glutaminolysis and transferrin regulate ferroptosis. Molecular cell, 59(2), 298-308.
    Gelfand, J. M., Neimann, A. L., Shin, D. B., Wang, X., Margolis, D. J., & Troxel, A. B. (2006). Risk of myocardial infarction in patients with psoriasis. Jama, 296(14), 1735-1741.
    Ghoreschi, K., Balato, A., Enerbäck, C., & Sabat, R. (2021). Therapeutics targeting the IL-23 and IL-17 pathway in psoriasis. The Lancet, 397(10275), 754-766.
    Golden, J. B., Groft, S. G., Squeri, M. V., Debanne, S. M., Ward, N. L., McCormick, T. S., & Cooper, K. D. (2015). Chronic psoriatic skin inflammation leads to increased monocyte adhesion and aggregation. The Journal of Immunology, 195(5), 2006-2018.
    Gong, X., & Wang, W. (2021). Profiles of innate immune cell infiltration and related Core genes in psoriasis. BioMed Research International, 2021.
    Goodman, W., Massari, J., McCormick, T., & Cooper, K. (2007). Does IL-6 in psoriatic lesions reverse the ability of regulatory T cells to suppress effector T cell proliferation? Journal of investigative dermatology.
    Goodman, W. A., Levine, A. D., Massari, J. V., Sugiyama, H., McCormick, T. S., & Cooper, K. D. (2009). IL-6 signaling in psoriasis prevents immune suppression by regulatory T cells. The Journal of Immunology, 183(5), 3170-3176.
    Grine, L., Steeland, S., Van Ryckeghem, S., Ballegeer, M., Lienenklaus, S., Weiss, S., Sanders, N. N., Vandenbroucke, R. E., & Libert, C. (2016). Topical imiquimod yields systemic effects due to unintended oral uptake. Scientific reports, 6(1), 1-6.
    Gruber, F., Marchetti-Deschmann, M., Kremslehner, C., & Schosserer, M. (2021). The skin epilipidome in stress, aging, and inflammation. Frontiers in Endocrinology, 11, 607076.
    Guiqi, G. (2011). Pre-treatment with glutamine attenuates lung injury in rats subjected to intestinal ischaemia–reperfusion. Injury, 42(1), 72-77.
    Ha, H.-L., Wang, H., Pisitkun, P., Kim, J.-C., Tassi, I., Tang, W., Morasso, M. I., Udey, M. C., & Siebenlist, U. (2014). IL-17 drives psoriatic inflammation via distinct, target cell-specific mechanisms. Proceedings of the National Academy of Sciences, 111(33), E3422-E3431.
    Harada, K., Ferdous, T., Kobayashi, H., & Ueyama, Y. (2018). Elemental diet accelerates the recovery from oral mucositis and dermatitis induced by 5-fluorouracil through the induction of fibroblast growth factor 2. Integrative Cancer Therapies, 17(2), 423-430.
    Harris, D. P., Haynes, L., Sayles, P. C., Duso, D. K., Eaton, S. M., Lepak, N. M., Johnson, L. L., Swain, S. L., & Lund, F. E. (2000). Reciprocal regulation of polarized cytokine production by effector B and T cells. Nature immunology, 1(6), 475-482.
    Havran, W. (2002). A role for skin gammadelta T cells in wound repair. Science.
    Havran, W. L., & Jameson, J. M. (2010). Epidermal T cells and wound healing. The Journal of Immunology, 184(10), 5423-5428.
    Hawkes, J. E., Gudjonsson, J. E., & Ward, N. L. (2017). The snowballing literature on imiquimod-induced skin inflammation in mice: a critical appraisal. Journal of investigative dermatology, 137(3), 546-549.
    Hawkes, J. E., Yan, B. Y., Chan, T. C., & Krueger, J. G. (2018). Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. The Journal of Immunology, 201(6), 1605-1613.
    Hayday, A., & Tigelaar, R. (2003). Immunoregulation in the tissues by γδ T cells. Nature Reviews Immunology, 3(3), 233-242.
    Heck, T. G., Schöler, C. M., & de Bittencourt, P. I. H. (2011). HSP70 expression: does it a novel fatigue signalling factor from immune system to the brain? Cell biochemistry and function, 29(3), 215-226.
    Herster, F., Bittner, Z., Archer, N. K., Dickhöfer, S., Eisel, D., Eigenbrod, T., Knorpp, T., Schneiderhan-Marra, N., Löffler, M. W., & Kalbacher, H. (2020). Neutrophil extracellular trap-associated RNA and LL37 enable self-amplifying inflammation in psoriasis. Nature communications, 11(1), 1-13.
    Hile, G. A., & Kahlenberg, J. M. (2021). Immunopathogenesis of skin injury in systemic lupus erythematosus. Current Opinion in Rheumatology, 33(2), 173-180.
    Horváth, S., Komlódi, R., Perkecz, A., Pintér, E., Gyulai, R., & Kemény, Á. (2019). Methodological refinement of Aldara-induced psoriasiform dermatitis model in mice. Scientific reports, 9(1), 1-8.
    Hou, Y.-C., Pai, M.-H., Wu, J.-M., Yang, P.-J., Lee, P.-C., Chen, K.-Y., Yeh, S.-L., & Lin, M.-T. (2021). Protective effects of glutamine and leucine supplementation on sepsis-induced skeletal muscle injuries. International Journal of Molecular Sciences, 22(23), 13003.
    Hsiung, Y.-C., Liu, J.-J., Hou, Y.-C., Yeh, C.-L., & Yeh, S.-L. (2014). Effects of dietary glutamine on the homeostasis of CD4+ T cells in mice with dextran sulfate sodium-induced acute colitis. PLoS One, 9(1), e84410.
    Hu, W., Shang, R., Yang, J., Chen, C., Liu, Z., Liang, G., He, W., & Luo, G. (2022). Skin γδ T Cells and Their Function in Wound Healing. Frontiers in immunology, 13, 875076-875076.
    Huang, S.-W., Chen, Y.-J., Wang, S.-T., Ho, L.-W., Kao, J.-K., Narita, M., Takahashi, M., Wu, C.-Y., Cheng, H.-Y., & Shieh, J.-J. (2016). Azithromycin impairs TLR7 signaling in dendritic cells and improves the severity of imiquimod-induced psoriasis-like skin inflammation in mice. Journal of Dermatological Science, 84(1), 59-70.
    Im, Y.-N., Lee, Y.-D., Park, J.-S., Kim, H.-K., Im, S.-Y., Song, H.-R., Lee, H.-K., & Han, M.-K. (2018). GPCR Kinase (GRK)-2 is a key negative regulator of itch: l-glutamine attenuates itch via a rapid induction of GRK2 in an ERK-dependent way. Journal of investigative dermatology, 138(8), 1834-1842.
    Ingersoll, M. A., Platt, A. M., Potteaux, S., & Randolph, G. J. (2011). Monocyte trafficking in acute and chronic inflammation. Trends in immunology, 32(10), 470-477.
    Iskandar, I., Parisi, R., Griffiths, C., Ashcroft, D., & Atlas, G. P. (2021). Systematic review examining changes over time and variation in the incidence and prevalence of psoriasis by age and gender. British Journal of Dermatology, 184(2), 243-258.
    Iwasaki, A., & Medzhitov, R. (2015). Control of adaptive immunity by the innate immune system. Nature immunology, 16(4), 343-353.
    Jeon, Y.-J., Sah, S. K., Yang, H. S., Lee, J. H., Shin, J., & Kim, T.-Y. (2017). Rhododendrin inhibits toll-like receptor-7-mediated psoriasis-like skin inflammation in mice. Experimental & Molecular Medicine, 49(6), e349-e349.
    Jeong, S.-Y., Im, Y. N., Youm, J. Y., Lee, H.-K., & Im, S.-Y. (2018). L-glutamine attenuates DSS-induced colitis via induction of MAPK phosphatase-1. Nutrients, 10(3), 288.
    Jiang, S., Yan, W., Wang, S. E., & Baltimore, D. (2018). Let-7 suppresses B cell activation through restricting the availability of necessary nutrients. Cell metabolism, 27(2), 393-403. e394.
    Jin, Z. W., Kim, H.-K., Lee, C.-H., Jung, S.-W., Shin, S.-J., Im, S.-Y., Cho, B.-H., & Lee, H.-K. (2012). Glutamine suppresses dinitrophenol fluorobenzene-induced allergic contact dermatitis and itching: inhibition of contact dermatitis by glutamine. Journal of Dermatological Science, 67(2), 88-94.
    Kaisho, T., & Akira, S. (2006). Toll-like receptor function and signaling. Journal of allergy and clinical immunology, 117(5), 979-987.
    Kamiya, K., Kishimoto, M., Sugai, J., Komine, M., & Ohtsuki, M. (2019). Risk factors for the development of psoriasis. International Journal of Molecular Sciences, 20(18), 4347.
    Kanda, N., Hoashi, T., & Saeki, H. (2020). Nutrition and psoriasis. International Journal of Molecular Sciences, 21(15), 5405.
    Karamani, C., Antoniadou, I. T., Dimou, A., Andreou, E., Kostakis, G., Sideri, A., Vitsos, A., Gkavanozi, A., Sfiniadakis, I., & Skaltsa, H. (2021). Optimization of psoriasis mouse models. Journal of Pharmacological and Toxicological Methods, 108, 107054.
    Katayama, H. (2018). Development of psoriasis by continuous neutrophil infiltration into the epidermis. Experimental dermatology, 27(10), 1084-1091.
    Kawasaki, T., & Kawai, T. (2014). Toll-like receptor signaling pathways. Frontiers in immunology, 461.
    Keijsers, R. R., Joosten, I., van Erp, P. E. J., Koenen, H. J., & van de Kerkhof, P. C. (2014). Cellular sources of IL‐17 in psoriasis: a paradigm shift? Experimental dermatology, 23(11), 799-803.
    Kew, S., Wells, S. M., Yaqoob, P., Wallace, F. A., Miles, E. A., & Calder, P. C. (1999). Dietary glutamine enhances murine T-lymphocyte responsiveness. The Journal of nutrition, 129(8), 1524-1531.
    Kim, H. (2011). Glutamine as an immunonutrient. Yonsei medical journal, 52(6), 892-897.
    Kim, J., & Krueger, J. G. (2015). The immunopathogenesis of psoriasis. Dermatologic clinics, 33(1), 13-23.
    Kim, J. M., Im, Y. N., Chung, Y. J., Youm, J. h., Im, S. Y., Han, M. K., & Lee, H. K. (2022). Glutamine deficiency shifts the asthmatic state toward neutrophilic airway inflammation. Allergy, 77(4), 1180-1191.
    Kim, M.-H., & Kim, H. (2017). The roles of glutamine in the intestine and its implication in intestinal diseases. International Journal of Molecular Sciences, 18(5), 1051.
    Kim, N., Lee, S., Kang, J., Choi, Y.-A., Lee, B., Kwon, T. K., Jang, Y. H., & Kim, S.-H. (2020). Hispidulin alleviates imiquimod-induced psoriasis-like skin inflammation by inhibiting splenic Th1/Th17 cell population and keratinocyte activation. International Immunopharmacology, 87, 106767.
    Kjellerup, R. B., Kragballe, K., Iversen, L., & Johansen, C. (2008). Pro‐inflammatory cytokine release in keratinocytes is mediated through the MAPK signal‐integrating kinases. Experimental dermatology, 17(6), 498-504.
    Klicznik, M., Szenes-Nagy, A., Campbell, D., & Gratz, I. (2018). Taking the lead–how keratinocytes orchestrate skin T cell immunity. Immunology letters, 200, 43-51.
    Knochelmann, H. M., Dwyer, C. J., Bailey, S. R., Amaya, S. M., Elston, D. M., Mazza-McCrann, J. M., & Paulos, C. M. (2018). When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cellular & molecular immunology, 15(5), 458-469.
    Knopp, T., Bieler, T., Jung, R., Ringen, J., Molitor, M., Jurda, A., Münzel, T., Waisman, A., Wenzel, P., & Karbach, S. H. (2021). Effects of Dietary Protein Intake on Cutaneous and Systemic Inflammation in Mice with Acute Experimental Psoriasis. Nutrients, 13(6), 1897.
    Kobayashi, T., Naik, S., & Nagao, K. (2019). Choreographing immunity in the skin epithelial barrier. Immunity, 50(3), 552-565.
    Kok, L., Dijkgraaf, F. E., Urbanus, J., Bresser, K., Vredevoogd, D. W., Cardoso, R. F., Perié, L., Beltman, J. B., & Schumacher, T. N. (2020). A committed tissue-resident memory T cell precursor within the circulating CD8+ effector T cell pool. Journal of Experimental Medicine, 217(10).
    Kondelkova, K., Vokurková, D., Krejsek, J., Borská, L., Fiala, Z., & Ctirad, A. (2010). Regulatory T cells (TREG) and their roles in immune system with respect to immunopathological disorders. Acta Medica (Hradec Kralove), 53(2), 73-77.
    Kratofil, R. M., Kubes, P., & Deniset, J. F. (2017). Monocyte conversion during inflammation and injury. Arteriosclerosis, thrombosis, and vascular biology, 37(1), 35-42.
    Kraus, R. F., & Gruber, M. A. (2021). Neutrophils—From bone marrow to first-line defense of the innate immune system. Frontiers in immunology, 5503.
    Kretzmann, N. A., Fillmann, H., Mauriz, J. L., Marroni, C. A., Marroni, N., González-Gallego, J., & Tuñón, M. J. (2008). Effects of glutamine on proinflammatory gene expression and activation of nuclear factor kappa B and signal transducers and activators of transcription in TNBS-induced colitis. Inflammatory bowel diseases, 14(11), 1504-1513.
    Krueger, G., & Ellis, C. N. (2005). Psoriasis—recent advances in understanding its pathogenesis and treatment. Journal of the American Academy of Dermatology, 53(1), S94-S100.
    Lai, C.-C., Liu, W.-L., & Chen, C.-M. (2014). Glutamine attenuates acute lung injury caused by acid aspiration. Nutrients, 6(8), 3101-3116.
    Lai, C.-Y., Su, Y.-W., Lin, K.-I., Hsu, L.-C., & Chuang, T.-H. (2017). Natural modulators of endosomal toll-like receptor-mediated psoriatic skin inflammation. Journal of Immunology Research, 2017.
    Langley, R. G., & Ellis, C. N. (2004). Evaluating psoriasis with psoriasis area and severity index, psoriasis global assessment, and lattice system physician's global assessment. Journal of the American Academy of Dermatology, 51(4), 563-569.
    Lee, C.-H., Kim, H.-K., Kim, J.-M., Ayush, O., Im, S.-Y., Oh, D.-K., & Lee, H.-K. (2012). Glutamine suppresses airway neutrophilia by blocking cytosolic phospholipase A2 via an induction of MAPK phosphatase-1. The Journal of Immunology, 189(11), 5139-5146.
    Lee, C., Kim, H., Jeong, J., Lee, Y., Jin, Z. W., Im, S., & Lee, H. (2015). Mechanism of glutamine inhibition of cytosolic phospholipase a2 (cPLA2): Evidence of physical interaction between glutamine-Induced mitogen-activated protein kinase phosphatase-1 and cPLA2. Clinical & Experimental Immunology, 180(3), 571-580.
    Lee, G. R. (2018). The balance of Th17 versus Treg cells in autoimmunity. International Journal of Molecular Sciences, 19(3), 730.
    Leijten, E. F., van Kempen, T. S., Olde Nordkamp, M. A., Pouw, J. N., Kleinrensink, N. J., Vincken, N. L., Mertens, J., Balak, D. M., Verhagen, F. H., & Hartgring, S. A. (2021). Tissue‐Resident Memory CD8+ T Cells From Skin Differentiate Psoriatic Arthritis From Psoriasis. Arthritis & Rheumatology, 73(7), 1220-1232.
    Lesueur, C., Bôle-Feysot, C., Bekri, S., Husson, A., Lavoinne, A., & Brasse-Lagnel, C. (2012). Glutamine induces nuclear degradation of the NF-κB p65 subunit in Caco-2/TC7 cells. Biochimie, 94(3), 806-815.
    Lewis, S. M., Williams, A., & Eisenbarth, S. C. (2019). Structure and function of the immune system in the spleen. Science immunology, 4(33), eaau6085.
    Li, B., Huang, L., Lv, P., Li, X., Liu, G., Chen, Y., Wang, Z., Qian, X., Shen, Y., & Li, Y. (2020). The role of Th17 cells in psoriasis. Immunologic research, 68(5), 296-309.
    Li, D., & Wu, M. (2021). Pattern recognition receptors in health and diseases. Signal transduction and targeted therapy, 6(1), 1-24.
    Li, P., Yin, Y.-L., Li, D., Kim, S. W., & Wu, G. (2007). Amino acids and immune function. British Journal of Nutrition, 98(2), 237-252.
    Li, Y., Zhang, G., Chen, M., Tong, M., Zhao, M., Tang, F., Xiao, R., & Wen, H. (2019). Rutaecarpine inhibited imiquimod-induced psoriasis-like dermatitis via inhibiting the NF-κB and TLR7 pathways in mice. Biomedicine & Pharmacotherapy, 109, 1876-1883.
    Li, Z. J., Sohn, K.-C., Choi, D.-K., Shi, G., Hong, D., Lee, H.-E., Whang, K. U., Lee, Y. H., Im, M., & Lee, Y. (2013). Roles of TLR7 in activation of NF-κB signaling of keratinocytes by imiquimod. PLoS One, 8(10), e77159.
    Liang, Y., Sarkar, M. K., Tsoi, L. C., & Gudjonsson, J. E. (2017). Psoriasis: a mixed autoimmune and autoinflammatory disease. Current opinion in immunology, 49, 1-8.
    Liboni, K., Li, N., & Neu, J. (2004). Mechanism of glutamine-mediated amelioration of lipopolysaccharide-induced IL-8 production in Caco-2 cells. Cytokine, 26(2), 57-65.
    Lin, A. M., Rubin, C. J., Khandpur, R., Wang, J. Y., Riblett, M., Yalavarthi, S., Villanueva, E. C., Shah, P., Kaplan, M. J., & Bruce, A. T. (2011). Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. The Journal of Immunology, 187(1), 490-500.
    Lin, Y. L., Liang, Y. C., Lee, S. S., & Chiang, B. L. (2005). Polysaccharide purified from Ganoderma lucidum induced activation and maturation of human monocyte‐derived dendritic cells by the NF‐κB and p38 mitogen‐activated protein kinase pathways. Journal of leukocyte biology, 78(2), 533-543.
    Liu, X.-t., Shi, Z.-r., Lu, S.-y., Hong, D., Qiu, X.-n., Tan, G.-z., Xiong, H., Guo, Q., & Wang, L. (2022). Enhanced Migratory Ability of Neutrophils Toward Epidermis Contributes to the Development of Psoriasis via Crosstalk With Keratinocytes by Releasing IL-17A. Frontiers in immunology, 13.
    Lowes, M. A., Suarez-Farinas, M., & Krueger, J. G. (2014). Immunology of psoriasis. Annual review of immunology, 32, 227.
    Lucius, K. (2022). Diet and Nutritional Supplements for Psoriasis. Journal name: Integrative and Complementary Therapies, 28(1), 43-50.
    Luckheeram, R. V., Zhou, R., Verma, A. D., & Xia, B. (2012). CD4+ T cells: differentiation and functions. Clinical and developmental immunology, 2012.
    Luisi, M. L. E., Lucarini, L., Biffi, B., Rafanelli, E., Pietramellara, G., Durante, M., Vidali, S., Provensi, G., Madiai, S., & Gheri, C. F. (2019). Effect of Mediterranean diet enriched in high quality extra virgin olive oil on oxidative stress, inflammation and gut microbiota in obese and normal weight adult subjects. Frontiers in pharmacology, 10, 1366.
    Müller-Röver, S., Foitzik, K., Paus, R., Handjiski, B., van der Veen, C., Eichmüller, S., McKay, I. A., & Stenn, K. S. (2001). A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. Journal of investigative dermatology, 117(1), 3-15.
    MacLeod, A. S., & Havran, W. L. (2011). Functions of skin-resident γδ T cells. Cellular and molecular life sciences, 68(14), 2399-2408.
    Macri, C., Pang, E. S., Patton, T., & O’Keeffe, M. (2018). Dendritic cell subsets. Seminars in cell & developmental biology,
    Mahmud, M. R., Akter, S., Tamanna, S. K., Mazumder, L., Esti, I. Z., Banerjee, S., Akter, S., Hasan, M. R., Acharjee, M., & Hossain, M. S. (2022). Impact of gut microbiome on skin health: gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes, 14(1), 2096995.
    Malaguarnera, L. (2019). Influence of resveratrol on the immune response. Nutrients, 11(5), 946.
    Mathers, A. R., & Larregina, A. T. (2006). Professional antigen-presenting cells of the skin. Immunologic research, 36(1), 127-136.
    Matos, T. R., O’Malley, J. T., Lowry, E. L., Hamm, D., Kirsch, I. R., Robins, H. S., Kupper, T. S., Krueger, J. G., & Clark, R. A. (2017). Clinically resolved psoriatic lesions contain psoriasis-specific IL-17–producing αβ T cell clones. The Journal of clinical investigation, 127(11), 4031-4041.
    Matsumoto, K., Hashimoto, K., Nishida, Y., Hashiro, M., & Yoshikawa, K. (1990). Growth-inhibitory effects of 1, 25-dihydroxyvitamin D3 on normal human keratinocytes cultured in serum-free medium. Biochemical and biophysical research communications, 166(2), 916-923.
    Mayers, J. R., & Vander Heiden, M. G. (2015). Famine versus feast: understanding the metabolism of tumors in vivo. Trends in biochemical sciences, 40(3), 130-140.
    Mazzocchi, A., Leone, L., Agostoni, C., & Pali-Schöll, I. (2019). The secrets of the Mediterranean diet. Does [only] olive oil matter? Nutrients, 11(12), 2941.
    Mehta, N. N., Yu, Y., Pinnelas, R., Krishnamoorthy, P., Shin, D. B., Troxel, A. B., & Gelfand, J. M. (2011). Attributable risk estimate of severe psoriasis on major cardiovascular events. The American journal of medicine, 124(8), 775. e771-775. e776.
    Mena, M.-P., Sacanella, E., Vazquez-Agell, M., Morales, M., Fito, M., Escoda, R., Serrano-Martínez, M., Salas-Salvado, J., Benages, N., & Casas, R. (2009). Inhibition of circulating immune cell activation: a molecular antiinflammatory effect of the Mediterranean diet. The American journal of clinical nutrition, 89(1), 248-256.
    Meng, D., Yang, Q., Wang, H., Melick, C. H., Navlani, R., Frank, A. R., & Jewell, J. L. (2020). Glutamine and asparagine activate mTORC1 independently of Rag GTPases. Journal of Biological Chemistry, 295(10), 2890-2899.
    Menssen, A., Trommler, P., Vollmer, S., Schendel, D., Albert, E., Gürtler, L., Riethmüller, G., & Prinz, J. C. (1995). Evidence for an antigen-specific cellular immune response in skin lesions of patients with psoriasis vulgaris. The Journal of Immunology, 155(8), 4078-4083.
    Mercurio, L., Morelli, M., Scarponi, C., Scaglione, G. L., Pallotta, S., Albanesi, C., & Madonna, S. (2021). PI3Kδ sustains keratinocyte hyperproliferation and epithelial inflammation: implications for a topically druggable target in psoriasis. Cells, 10(10), 2636.
    Michaëlsson, G., Gerdén, B., Hagforsen, E., Nilsson, B., Pihl‐Lundin, I., Kraaz, W., Hjelmquist, G., & Lööf, L. (2000). Psoriasis patients with antibodies to gliadin can be improved by a gluten‐free diet. British Journal of Dermatology, 142(1), 44-51.
    Millsop, J. W., Bhatia, B. K., Debbaneh, M., Koo, J., & Liao, W. (2014). Diet and psoriasis, part III: role of nutritional supplements. Journal of the American Academy of Dermatology, 71(3), 561-569.
    Mizumaki, K., Horii, M., Kano, M., Komuro, A., & Matsushita, T. (2021). Suppression of IL-23-mediated psoriasis-like inflammation by regulatory B cells. Scientific reports, 11(1), 1-13.
    Morizane, S., & Gallo, R. L. (2012). Antimicrobial peptides in the pathogenesis of psoriasis. The Journal of dermatology, 39(3), 225-230.
    Murakami, M., Nakatani, Y., Atsumi, G.-i., Inoue, K., & Kudo, I. (2017). Regulatory functions of phospholipase A 2. Critical Reviews™ in Immunology, 37(2-6).
    Murphrey, M. B., Miao, J. H., & Zito, P. M. (2018). Histology, stratum corneum.
    Murphy, C. G., Stapelton, R., Chen, G., Winter, D., & Bouchier-Hayes, D. (2012). Glutamine preconditioning protects against local and systemic injury induced by orthopaedic surgery. The journal of nutrition, health & aging, 16(4), 365-369.
    Murphy, M., Kerr, P., & Grant-Kels, J. M. (2007). The histopathologic spectrum of psoriasis. Clinics in dermatology, 25(6), 524-528.
    Nakahara, T., Moroi, Y., Uchi, H., & Furue, M. (2006). Differential role of MAPK signaling in human dendritic cell maturation and Th1/Th2 engagement. Journal of Dermatological Science, 42(1), 1-11.
    Nakahigashi, K., Kabashima, K., Ikoma, A., Verkman, A. S., Miyachi, Y., & Hara-Chikuma, M. (2011). Upregulation of aquaporin-3 is involved in keratinocyte proliferation and epidermal hyperplasia. Journal of investigative dermatology, 131(4), 865-873.
    Nestle, F. O., Di Meglio, P., Qin, J.-Z., & Nickoloff, B. J. (2009). Skin immune sentinels in health and disease. Nature Reviews Immunology, 9(10), 679-691.
    Newsholme, P. (2001). Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? The Journal of nutrition, 131(9), 2515S-2522S.
    Nguyen, A. V., & Soulika, A. M. (2019). The dynamics of the skin’s immune system. International Journal of Molecular Sciences, 20(8), 1811.
    Ni, X., & Lai, Y. (2020). Keratinocyte: A trigger or an executor of psoriasis? Journal of leukocyte biology, 108(2), 485-491.
    Nussbaum, L., Chen, Y., & Ogg, G. (2021). Role of regulatory T cells in psoriasis pathogenesis and treatment. British Journal of Dermatology, 184(1), 14-24.
    Ogle, C. K., Ogle, J. D., Mao, J. X., Simon, J., Noel, J. G., Li, B. G., & Alexander, J. W. (1994). Effect of glutamine on phagocytosis and bacterial killing by normal and pediatric burn patient neutrophils. Journal of Parenteral and Enteral Nutrition, 18(2), 128-133.
    Olendzki, B. C., Silverstein, T. D., Persuitte, G. M., Ma, Y., Baldwin, K. R., & Cave, D. (2014). An anti-inflammatory diet as treatment for inflammatory bowel disease: a case series report. Nutrition journal, 13(1), 1-7.
    Orsmond, A., Bereza-Malcolm, L., Lynch, T., March, L., & Xue, M. (2021). Skin barrier dysregulation in psoriasis. International Journal of Molecular Sciences, 22(19), 10841.
    Parisi, R., Iskandar, I. Y., Kontopantelis, E., Augustin, M., Griffiths, C. E., & Ashcroft, D. M. (2020). National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. Bmj, 369.
    Peng, S., Cao, M., Sun, X., Zhou, Y., Chen, C. Y., Ma, T., Li, H., Li, B., Zhu, B., & Li, X. (2020). Recombinant programmed cell death 1 inhibits psoriatic inflammation in imiquimod‑treated mice. International Journal of Molecular Medicine, 46(2), 869-879.
    Perez, A., Raab, R., Chen, T., Turner, A., & Hollck, M. (1996). Safety and efficacy of oral calcitriol (1, 25‐dihydroxyvitamin D3) for the treatment of psoriasis. British Journal of Dermatology, 134(6), 1070-1078.
    Phan, C., Touvier, M., Kesse-Guyot, E., Adjibade, M., Hercberg, S., Wolkenstein, P., Chosidow, O., Ezzedine, K., & Sbidian, E. (2018). Association between Mediterranean anti-inflammatory dietary profile and severity of psoriasis: results from the NutriNet-Santé cohort. JAMA dermatology, 154(9), 1017-1024.
    Pithon‐Curi, T. C., Trezena, A. G., Tavares‐Lima, W., & Curi, R. (2002). Evidence that glutamine is involved in neutrophil function. Cell biochemistry and function, 20(2), 81-86.
    Pona, A., Haidari, W., Kolli, S. S., & Feldman, S. R. (2019). Diet and psoriasis. Dermatology online journal, 25(2).
    Presland, R. B., Boggess, D., Lewis, S. P., Hull, C., Fleckman, P., & Sundberg, J. P. (2000). Loss of normal profilaggrin and filaggrin in flaky tail (ft/ft) mice: an animal model for the filaggrin-deficient skin disease ichthyosis vulgaris. Journal of investigative dermatology, 115(6), 1072-1081.
    Prinz, J. (2003). The role of T cells in psoriasis. Journal of the European Academy of Dermatology and Venereology, 17(3), 257-270.
    Quaresma, J. A. S. (2019). Organization of the skin immune system and compartmentalized immune responses in infectious diseases. Clinical microbiology reviews, 32(4), e00034-00018.
    Rademacher, F., Gläser, R., & Harder, J. (2021). Antimicrobial peptides and proteins: Interaction with the skin microbiota. Experimental dermatology, 30(10), 1496-1508.
    Reeves, P. G., Nielsen, F. H., & Fahey Jr, G. C. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. In: Oxford University Press.
    Rendon, A., & Schäkel, K. (2019). Psoriasis pathogenesis and treatment. International Journal of Molecular Sciences, 20(6), 1475.
    Ribot, J. C., Lopes, N., & Silva-Santos, B. (2021). γδ T cells in tissue physiology and surveillance. Nature Reviews Immunology, 21(4), 221-232.
    Richmond, J. M., & Harris, J. E. (2014). Immunology and skin in health and disease. Cold Spring Harbor perspectives in medicine, 4(12), a015339.
    Rizzo, H. L., Kagami, S., Phillips, K. G., Kurtz, S. E., Jacques, S. L., & Blauvelt, A. (2011). IL-23–mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A. The Journal of Immunology, 186(3), 1495-1502.
    Rodas, P. C., Rooyackers, O., Hebert, C., Norberg, Å., & Wernerman, J. (2012). Glutamine and glutathione at ICU admission in relation to outcome. Clinical science, 122(12), 591-597.
    Roth, E. (2007). Immune and cell modulation by amino acids. Clinical nutrition, 26(5), 535-544.
    Roth, E. (2008). Nonnutritive effects of glutamine. The Journal of nutrition, 138(10), 2025S-2031S.
    Søyland, E., Heier, I., Rodríguez‐Gallego, C., Mollnes, T., Johansen, F. E., Holven, K., Halvorsen, B., Aukrust, P., Jahnsen, F., & De La Rosa Carrillo, D. (2011). Sun exposure induces rapid immunological changes in skin and peripheral blood in patients with psoriasis. British Journal of Dermatology, 164(2), 344-355.
    Sabat, R., Wolk, K., Loyal, L., Döcke, W.-D., & Ghoreschi, K. (2019). T cell pathology in skin inflammation. Seminars in Immunopathology,
    Sahi, F. M., Masood, A., Danawar, N. A., Mekaiel, A., & Malik, B. H. (2020). Association between psoriasis and depression: a traditional review. Cureus, 12(8).
    Sakai, K., Sanders, K. M., Youssef, M. R., Yanushefski, K. M., Jensen, L., Yosipovitch, G., & Akiyama, T. (2016). Mouse model of imiquimod-induced psoriatic itch. Pain, 157(11), 2536.
    Salas-Salvadó, J., Guasch-Ferré, M., Lee, C.-H., Estruch, R., Clish, C. B., & Ros, E. (2015). Protective effects of the Mediterranean diet on type 2 diabetes and metabolic syndrome. The Journal of nutrition, 146(4), 920S-927S.
    Santos, A. C. A., Hebeba, C. B., Hastreiter, A. A., de Oliveira, D. C., Naoto Makiyama, E., Farsky, S. H. P., Borelli, P., & Fock, R. A. (2019). Exogenous glutamine impairs neutrophils migration into infections sites elicited by lipopolysaccharide by a multistep mechanism. Amino acids, 51(3), 451-462.
    Schön, M. P. (2019). Adaptive and innate immunity in psoriasis and other inflammatory disorders. Frontiers in immunology, 10, 1764.
    Schön, M. P., Manzke, V., & Erpenbeck, L. (2021). Animal models of psoriasis—highlights and drawbacks. Journal of allergy and clinical immunology, 147(2), 439-455.
    Shao, S., Chen, J., Swindell, W. R., Tsoi, L. C., Xing, X., Ma, F., Uppala, R., Sarkar, M. K., Plazyo, O., & Billi, A. C. (2021). Phospholipase A2 enzymes represent a shared pathogenic pathway in psoriasis and pityriasis rubra pilaris. JCI insight, 6(20).
    Shao, S., Fang, H., Dang, E., Xue, K., Zhang, J., Li, B., Qiao, H., Cao, T., Zhuang, Y., & Shen, S. (2019). Neutrophil extracellular traps promote inflammatory responses in psoriasis via activating epidermal TLR4/IL-36R crosstalk. Frontiers in immunology, 10, 746.
    Sharma, A., Upadhyay, D. K., Gupta, G. D., Narang, R. K., & Rai, V. K. (2022). IL-23/Th17 Axis: A Potential Therapeutic Target of Psoriasis. Current Drug Research Reviews Formerly: Current Drug Abuse Reviews, 14(1), 24-36.
    Shih, C.-M., Hsieh, C.-K., Huang, C.-Y., Huang, C.-Y., Wang, K.-H., Fong, T.-H., Trang, N. T. T., Liu, K.-T., & Lee, A.-W. (2020). Lycopene inhibit IMQ-induced psoriasis-like inflammation by inhibiting ICAM-1 production in mice. Polymers, 12(7), 1521.
    Shih, Y. M., Shih, J. M., Pai, M. H., Hou, Y. C., Yeh, C. L., & Yeh, S. L. (2016). Glutamine administration after sublethal lower limb ischemia reduces inflammatory reaction and offers organ protection in ischemia/reperfusion injury. Journal of Parenteral and Enteral Nutrition, 40(8), 1122-1130.
    Shiromizu, C. M., & Jancic, C. C. (2018). γδ T lymphocytes: an effector cell in autoimmunity and infection. Frontiers in immunology, 9, 2389.
    Shou, Y., Yang, L., Yang, Y., & Xu, J. (2021). Inhibition of keratinocyte ferroptosis suppresses psoriatic inflammation. Cell death & disease, 12(11), 1-10.
    Singh, T. P., Zhang, H. H., Hwang, S. T., & Farber, J. M. (2019). IL‐23‐and imiquimod‐induced models of experimental psoriasis in mice. Current Protocols in Immunology, 125(1), e71.
    Son, E. D., Kim, H. J., Kim, K. H., Bin, B. H., Bae, I. H., Lim, K. M., Yu, S. J., Cho, E. G., & Lee, T. R. (2016). S100A7 (psoriasin) inhibits human epidermal differentiation by enhanced IL‐6 secretion through IκB/NF‐κB signalling. Experimental dermatology, 25(8), 636-641.
    Streilein, J. W. (1983). Skin-associated lymphoid tissues (SALT): origins and functions. Journal of investigative dermatology, 80.
    Su, L.-H., Lin, M.-T., Yeh, S.-L., & Yeh, C.-L. (2021). Glutamine administration attenuates kidney inflammation in obese mice complicated with polymicrobial sepsis. Mediators of inflammation, 2021.
    Su, S.-T., Yeh, C.-L., Hou, Y.-C., Pai, M.-H., & Yeh, S.-L. (2017). Dietary glutamine supplementation enhances endothelial progenitor cell mobilization in streptozotocin-induced diabetic mice subjected to limb ischemia. The Journal of Nutritional Biochemistry, 40, 86-94.
    Sugiyama, H., Gyulai, R., Toichi, E., Garaczi, E., Shimada, S., Stevens, S. R., McCormick, T. S., & Cooper, K. D. (2005). Dysfunctional blood and target tissue CD4+ CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. The Journal of Immunology, 174(1), 164-173.
    Sun, J., Zhao, Y., & Hu, J. (2013). Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PLoS One, 8(6), e67078.
    Sundberg, J. P., & Silva, K. A. (2012). What color is the skin of a mouse? Veterinary pathology, 49(1), 142-145.
    Surber, C., Humbert, P., Abels, C., & Maibach, H. (2018). The acid mantle: a myth or an essential part of skin health? pH of the Skin: Issues and Challenges, 54, 1-10.
    Surcel, M., Huică, R.-I., Munteanu, A. N., Isvoranu, G., Pirvu, I. R., Ciotaru, D., Constantin, C., Bratu, O., Căruntu, C., & Neagu, M. (2019). Phenotypic changes of lymphocyte populations in psoriasiform dermatitis animal model. Experimental and therapeutic medicine, 17(2), 1030-1038.
    Sweeney, C. M., Tobin, A.-M., & Kirby, B. (2011). Innate immunity in the pathogenesis of psoriasis. Archives of dermatological research, 303(10), 691-705.
    Swindell, W. R., Michaels, K. A., Sutter, A. J., Diaconu, D., Fritz, Y., Xing, X., Sarkar, M. K., Liang, Y., Tsoi, A., & Gudjonsson, J. E. (2017). Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis. Genome medicine, 9(1), 1-21.
    Takahashi, T., & Yamasaki, K. (2020). Psoriasis and antimicrobial peptides. International Journal of Molecular Sciences, 21(18), 6791.
    Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140(6), 805-820.
    Tapiero, H., Mathe, G., Couvreur, P., & Tew, K. (2002). II. Glutamine and glutamate. Biomedicine & Pharmacotherapy, 56(9), 446-457.
    Terhorst, D., Chelbi, R., Wohn, C., Malosse, C., Tamoutounour, S., Jorquera, A., Bajenoff, M., Dalod, M., Malissen, B., & Henri, S. (2015). Dynamics and transcriptomics of skin dendritic cells and macrophages in an imiquimod-induced, biphasic mouse model of psoriasis. The Journal of Immunology, 195(10), 4953-4961.
    Tian, D., & Lai, Y. (2022). The Relapse of Psoriasis: Mechanisms and Mysteries. JID Innovations, 2(3).
    Toichi, E., Tachibana, T., & Furukawa, F. (2000). Rapid improvement of psoriasis vulgaris during drug-induced agranulocytosis. Journal of the American Academy of Dermatology, 43(2), 391-395.
    Tonel, G., & Conrad, C. (2009). Interplay between keratinocytes and immune cells—recent insights into psoriasis pathogenesis. The international journal of biochemistry & cell biology, 41(5), 963-968.
    Tortora, Gerard J(2005).Principles of Anatomy & Physiology - Learning Guide(11th, 06). Australia: John Wiley & Sons
    Tsai, P.-H., Liu, J.-J., Yeh, C.-L., Chiu, W.-C., & Yeh, S.-L. (2012). Effects of glutamine supplementation on oxidative stress-related gene expression and antioxidant properties in rats with streptozotocin-induced type 2 diabetes. British Journal of Nutrition, 107(8), 1112-1118.
    Tsai, P.-H., Yeh, C.-L., Liu, J.-J., Chiu, W.-C., & Yeh, S.-L. (2012). Effects of dietary glutamine on inflammatory mediator gene expressions in rats with streptozotocin-induced diabetes. Nutrition, 28(3), 288-293.
    Tsoi, L. C., Stuart, P. E., Tian, C., Gudjonsson, J. E., Das, S., Zawistowski, M., Ellinghaus, E., Barker, J. N., Chandran, V., & Dand, N. (2017). Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. Nature communications, 8(1), 1-8.
    Uchida, H., Kamata, M., Shimizu, T., Egawa, S., Ito, M., Takeshima, R., Mizukawa, I., Watanabe, A., & Tada, Y. (2021). Apremilast downregulates interleukin-17 production and induces splenic regulatory B cells and regulatory T cells in imiquimod-induced psoriasiform dermatitis. Journal of Dermatological Science, 104(1), 55-62.
    Ueyama, A., Yamamoto, M., Tsujii, K., Furue, Y., Imura, C., Shichijo, M., & Yasui, K. (2014). Mechanism of pathogenesis of imiquimod‐induced skin inflammation in the mouse: a role for interferon‐alpha in dendritic cell activation by imiquimod. The Journal of dermatology, 41(2), 135-143.
    Van Der Fits, L., Mourits, S., Voerman, J. S., Kant, M., Boon, L., Laman, J. D., Cornelissen, F., Mus, A.-M., Florencia, E., & Prens, E. P. (2009). Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. The Journal of Immunology, 182(9), 5836-5845.
    Van Smeden, J., & Bouwstra, J. A. (2016). Stratum corneum lipids: their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Skin barrier function, 49, 8-26.
    Vats, K., Kruglov, O., Mizes, A., Samovich, S. N., Amoscato, A. A., Tyurin, V. A., Tyurina, Y. Y., Kagan, V. E., & Bunimovich, Y. L. (2021). Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure. Redox biology, 47, 102143.
    Vinter, H., Iversen, L., Steiniche, T., Kragballe, K., & Johansen, C. (2015). Aldara®‐induced skin inflammation: studies of patients with psoriasis. British Journal of Dermatology, 172(2), 345-353.
    Wagner, E. F., Schonthaler, H. B., Guinea-Viniegra, J., & Tschachler, E. (2010). Psoriasis: what we have learned from mouse models. Nature Reviews Rheumatology, 6(12), 704-714.
    Walter, A., Schäfer, M., Cecconi, V., Matter, C., Urosevic-Maiwald, M., Belloni, B., Schönewolf, N., Dummer, R., Bloch, W., & Werner, S. (2013). Aldara activates TLR7-independent immune defence. Nature communications, 4(1), 1-13.
    Wang, W., Qu, R., Wang, X., Zhang, M., Zhang, Y., Chen, C., Chen, X., Qiu, C., Li, J., & Pan, X. (2019). GDF11 antagonizes psoriasis-like skin inflammation via suppression of NF-κB signaling pathway. Inflammation, 42(1), 319-330.
    Wang, Y., Jiang, Z. M., Nolan, M. T., Jiang, H., Han, H. R., Yu, K., Li, H. L., Jie, B., & Liang, X. K. (2010). The Impact of Glutamine Dipeptide–Supplemented Parenteral Nutrition on Outcomes of Surgical Patients: A Meta‐Analysis of Randomized Clinical Trials. Journal of Parenteral and Enteral Nutrition, 34(5), 521-529.
    Wang, Y., Li, P., Zhang, L., Fu, J., Di, T., Li, N., Meng, Y., Guo, J., & Zhao, J. (2020). Stress aggravates and prolongs imiquimod‐induced psoriasis‐like epidermal hyperplasis and IL‐1β/IL‐23p40 production. Journal of leukocyte biology, 108(1), 267-281.
    Watford, M. (2015). Glutamine and glutamate: Nonessential or essential amino acids? Animal Nutrition, 1(3), 119-122.
    Williams, I. R., & Kupper, T. S. (1996). Immunity at the surface: homeostatic mechanisms of the skin immune system. Life Sciences, 58(18), 1485-1507.
    Wolf, A., Alberto, Y., Barman, P., & Goodridge Helen, S. (2019). The ontogeny of monocyte subsets. Front Immunol 10: 1642. In.
    Worbs, T., Hammerschmidt, S. I., & Förster, R. (2017). Dendritic cell migration in health and disease. Nature Reviews Immunology, 17(1), 30-48.
    Wrone-Smith, T., & Nickoloff, B. J. (1996). Dermal injection of immunocytes induces psoriasis. The Journal of clinical investigation, 98(8), 1878-1887.
    Wu, J. J., Nguyen, T. U., Poon, K.-Y. T., & Herrinton, L. J. (2012). The association of psoriasis with autoimmune diseases. Journal of the American Academy of Dermatology, 67(5), 924-930.
    Wu, J. K., Siller, G., & Strutton, G. (2004). Psoriasis induced by topical imiquimod. Australasian journal of dermatology, 45(1), 47-50.
    Xue, H., Sufit, A. J., & Wischmeyer, P. E. (2011). Glutamine therapy improves outcome of in vitro and in vivo experimental colitis models. Journal of Parenteral and Enteral Nutrition, 35(2), 188-197.
    Yang, B.-Y., Cheng, Y.-G., Liu, Y., Liu, Y., Tan, J.-Y., Guan, W., Guo, S., & Kuang, H.-X. (2019). Datura Metel L. Ameliorates Imiquimod-Induced Psoriasis-Like Dermatitis and Inhibits Inflammatory Cytokines Production through TLR7/8–MyD88–NF-κB–NLRP3 Inflammasome Pathway. Molecules, 24(11), 2157.
    Yang, D., Guo, Y., Wu, J., Qin, J., Wu, J., Lu, Y., Xiao, Y., Zhang, X., & Ye, J. (2022). Chinese herbal medicine Jia Wei Jing Xie Yin (JWJXY) ameliorates psoriasis via suppressing the Th17 cell response. Annals of Translational Medicine, 10(6).
    Yang, G., Seok, J. K., Kang, H. C., Cho, Y.-Y., Lee, H. S., & Lee, J. Y. (2020). Skin barrier abnormalities and immune dysfunction in atopic dermatitis. International Journal of Molecular Sciences, 21(8), 2867.
    Yang, J., Zhang, L., Yu, C., Yang, X.-F., & Wang, H. (2014). Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomarker research, 2(1), 1-9.
    Yang, L., Li, B., Dang, E., Jin, L., Fan, X., & Wang, G. (2016). Impaired function of regulatory T cells in patients with psoriasis is mediated by phosphorylation of STAT3. Journal of Dermatological Science, 81(2), 85-92.
    Yeh, S.-L., Lai, Y.-N., Shang, H.-F., Lin, M.-T., & Chen, W.-J. (2004). Effects of glutamine supplementation on innate immune response in rats with gut-derived sepsis. British Journal of Nutrition, 91(3), 423-429.
    Zhang, L., Li, Y., Yang, X., Wei, J., Zhou, S., Zhao, Z., Cheng, J., Duan, H., Jia, T., & Lei, Q. (2016). Characterization of Th17 and FoxP3+ Treg cells in paediatric psoriasis patients. Scandinavian journal of immunology, 83(3), 174-180.
    Zhang, L., Yang, X.-Q., Cheng, J., Hui, R.-S., & Gao, T.-W. (2010). Increased Th17 cells are accompanied by FoxP3+ Treg cell accumulation and correlated with psoriasis disease severity. Clinical immunology, 135(1), 108-117.
    Zhang, P., & Wu, M. X. (2018). A clinical review of phototherapy for psoriasis. Lasers in medical science, 33(1), 173-180.
    Zhang, S., Zhang, J., Yu, J., Chen, X., Zhang, F., Wei, W., Zhang, L., Chen, W., Lin, N., & Wu, Y. (2021). Hyperforin Ameliorates Imiquimod-Induced Psoriasis-Like Murine Skin Inflammation by Modulating IL-17A–Producing γδ T Cells. Frontiers in immunology, 12, 635076.
    Zhu, B., Jing, M., Yu, Q., Ge, X., Yuan, F., & Shi, L. (2021). Treatments in psoriasis: from standard pharmacotherapy to nanotechnology therapy. Advances in Dermatology and Allergology/Postępy Dermatologii i Alergologii, 38(1).

    下載圖示
    QR CODE