研究生: |
林怡欣 Lin, Yi-Hsin |
---|---|
論文名稱: |
不同坡度與不同速度下走跑的下肢肌肉活動與運動學差異 The kinematics and EMG analysis of the lower limb in walking and running with different speeds and slopes |
指導教授: |
相子元
Shiang, Tzyy-Yuang |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 上坡 、下坡 、平地 、轉換速度 |
英文關鍵詞: | uphill, downhill, level, preferred transition speed |
論文種類: | 學術論文 |
相關次數: | 點閱:194 下載:30 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:了解在不同坡度(10% 下坡、平地和10% 上坡)與不同速度(75%、100%、125%的轉換速度)下,走路與跑步的下肢肌肉活動狀況,與運動學差異。方法: 招募12位有從事規律運動的受試者,實驗分為兩階段,第一階段為轉換速度的訂定;第二階段收集在三種不同坡度與三種不同速度下,走路與跑步之下肢肌肉活動與運動學參數。採用重複量數三因子變異數分析,顯著水準定為α=.05。結果:坡度與速度的增加,對走路時的步長、步頻與平均肌電都會增加。平地高速走時有最小的身體質量中心垂直位移。踝關節與髖關節在上坡時有較大的關節活動,膝關節則是在下坡時有較大的關節活動;隨著速度的增加對髖屈曲角度會增加,踝蹠屈角度也會增加。結論:不同坡度與不同速度下走、跑,確實會對身體活動產生影響,本研究建議,可以高速走的方式取代慢跑,並加入坡度上的變化,提升身體活動量,也可以增加使用跑步機時的樂趣。
Purpose: This study was to compare the kinematics and EMG analysis of the lower limb in walking and running with different speeds (75%, 100%, 125% preferred transition speed) and slopes (10% downhill, level, 10% uphill). Methods: There are twelve male subjects recruited in this study. The experiment consisted of two parts. The first part was to determine the PTS on different slopes. The second part compared walking and running at these speeds on treadmill with different slopes using Vicon Motion System and four surface EMG. Using three way ANOVA, significant changes were identified at a p < 0.05 level. Results: The stride length, stride frequency and muscle activities were higher when walking with the increase in slope and speed. Walking on the high speed has the minima vertical displacements of body COM. Ankle joint and hip joint had larger joint range of motion on uphill but knee joint was on downhill. As the speed up, hip flexion and ankle extension were increased. Conclusion: Walking at higher speeds is safer and more efficient than running. Therefore, we can substitute or replace running by walking at higher speeds and coordinate with different slopes as a new training method on the treadmill.
林瑞雄(1992)。國民健康調查之規劃與試驗。臺北市:行政院衛生署(行政院 衛生署委託研究)。
陳怡君(2008)。走到跑臨界速度身體活動量差異之比較(未出版之碩士論文)。臺北市立體育學院,臺北市。
Aerts, P., Van Damme, R., Van Elsacker, L., & Duchene, V. (2000). Spatio-temporal gait characteristics of the hind-limb cycles during voluntary bipedal and quadrupedal walking in bonobos (Pan paniscus). American Journal of Physical Anthropology, 111(4), 503-517.
Alexander, R. (1989). Optimization and gaits in the locomotion of vertebrates. Physiological Reviews, 69(4), 1199-1227.
Alexander, R. (1995). Simple models of human movement. Applied Mechanics Reviews, 48, 461-470.
Armstrong, R., Ogilvie, R., & Schwane, J. (1983). Eccentric exercise-induced injury to rat skeletal muscle. Journal of Applied Physiology, 54(1), 80-93.
Biewener, A., Farley, C., Roberts, T., & Temaner, M. (2004). Muscle mechanical advantage of human walking and running: Implications for energy cost. Journal of Applied Physiology, 97(6), 2266-2274.
Bobbert, A. (1960). Energy expenditure in level and grade walking. Journal of Applied Physiology, 15(6), 1015-1021.
Cappellini, G., Ivanenko, Y., Poppele, R., & Lacquaniti, F. (2006). Motor patterns in human walking and running. Journal of Neurophysiology, 95(6), 3426-3437.
Chen, T., Nosaka, K., & Tu, J. (2007). Changes in running economy following downhill running. Journal of Sports Sciences, 25(1), 55-63.
Clement, D., & Taunton, J. (1980). A guide to the prevention of running injuries. Canadian Family Physician, 26, 543-548.
Cotes, J., & Meade, F. (1960). The energy expenditure and mechanical energy demand in walking. Ergonomics, 3(2), 97-120.
Di Prampero, P. (1986). The energy cost of human locomotion on land and in water. International Journal of Sports Medicine, 7(2), 55-72.
Dill, D. (1965). Oxygen used in horizontal and grade walking and running on the treadmill. Journal of Applied Physiology, 20(1), 19-22.
Ebbeling, C., & Clarkson, P. (1990). Muscle adaptation prior to recovery following eccentric exercise. European Journal of Applied Physiology and Occupational Physiology, 60(1), 26-31.
Friden, J., Seger, J., & Ekblom, B. (1988). Sublethal muscle fibre injuries after high-tension anaerobic exercise. European Journal of Applied Physiology and Occupational Physiology, 57(3), 360-368.
Getchell, N., & Whitall, J. (2004). Transitions to and from asymmetrical gait patterns. Journal of Motor Behavior, 36(1), 13-27.
Gordon, K. E., Ferris, D. P., & Kuo, A. D. (2009). Metabolic and mechanical energy costs of reducing vertical center of mass movement during gait. Archives of Physical Medicine and Rehabilitation, 90(1), 136-144.
Gottschall, J., & Kram, R. (2005). Ground reaction forces during downhill and uphill running. Journal of Biomechanics, 38(3), 445-452.
Gregor, R., & Costill, D. (1973). A comparison of the energy expenditure during positive and negative grade running. The Journal of Sports Medicine and Physical Fitness, 13(4), 248-252.
Grillner, S., Halbertsma, J., Nilsson, J., & Thorstensson, A. (1979). The adaptation to speed in human locomotion. Brain Research, 165(1), 177-182.
Grimston, S., Nigg, B., Fisher, V., & Ajemian, S. (1994). External loads throughout a 45 minute run in stress fracture and non-stress fracture runners. Journal of Biomechanics, 27(6), 668-673.
Guo, L. Y., Su, F. C., Yang, C. H., Wang, S. H., Chang, J. J., Wu, W. L., et al. (2006). Effects of speed and incline on lower extremity kinematics during treadmill jogging in healthy subjects. Biomedical Engineering Applications Basis Communications, 18(2), 73-79.
Hanna, A., Abernethy, B., Neal, R., & Burgess-Limerick, R. (2000). Triggers for the transition between human walking and running. Energetics of Human Activity, 124-164.
Hreljac, A. (1993). Preferred and energetically optimal gait transition speeds in human locomotion. Medicine & Science in Sports & Exercise, 25(10), 1158-1162.
Hreljac, A. (1995). Determinants of the gait transition speed during human locomotion: Kinematic factors. Journal of Biomechanics, 28(6), 669-677.
Hreljac, A., Imamura, R., Escamilla, R. F., & Edwards, W. B. (2007). Effects of changing protocol, grade, and direction on the preferred gait transition speed during human locomotion. Gait & Posture, 25(3), 419-424.
Hreljac, A., Marshall, R., & Hume, P. (2000). Evaluation of lower extremity overuse injury potential in runners. Medicine & Science in Sports & Exercise, 32(9), 1635-1641.
Lay, A., Hass, C., Nichols, T., & Gregor, R. (2007). The effects of sloped surfaces on locomotion: An electromyographic analysis. Journal of Biomechanics, 40(6), 1276-1285.
Leroux, A., Fung, J., & Barbeau, H. (2002). Postural adaptation to walking on inclined surfaces: I. Normal strategies. Gait & Posture, 15(1), 64-74.
Li, L. (2000). Stability landscapes of walking and running near gait transition speed. Journal of Applied Biomechanics, 16(4), 428-435.
Li, L., & Hamill, J. (2002). Characteristics of the vertical ground reaction force component prior to gait transition. Research Quarterly for Exercise and Sport, 73(3), 229-237.
Margaria, R., Cerretelli, P., Aghemo, P., & Sassi, G. (1963). Energy cost of running. Journal of Applied Physiology, 18(2), 367-370.
McMahon, T., Valiant, G., & Frederick, E. (1987). Groucho running. Journal of Applied Physiology, 62(6), 2326-2337.
Mercier, J., Gallais, D., Durand, M., Goudal, C., Micallef, J., & Prefaut, C. (1994). Energy expenditure and cardiorespiratory responses at the transition between walking and running. European Journal of Applied Physiology and Occupational Physiology, 69(6), 525-529.
Minetti, A., Ardigo, L., & Saibene, F. (1994). The transition between walking and running in humans: Metabolic and mechanical aspects at different gradients. Acta Physiologica Scandinavica, 150(3), 315-323.
Munro, C., Miller, D., & Fuglevand, A. (1987). Ground reaction forces in running: A reexamination. Journal of Biomechanics, 20(2), 147-155.
Mueller, M. J., Minor, S. D., Schaaf, J. A., Strube, M. J., & Sahrmann, S. A. (1995). Relationship of plantar-flexor peak torque and dorsiflexion range of motion to kinetic variables during walking. Physical Therapy, 75(8), 684-693.
Neptune, R., Kautz, S., & Zajac, F. (2001). Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. Journal of Biomechanics, 34(11), 1387-1398.
Neptune, R., Zajac, F., & Kautz, S. (2004). Muscle force redistributes segmental power for body progression during walking. Gait & Posture, 19(2), 194-205.
Neptune, R., & Sasaki, K. (2005). Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. The Journal of Experimental Biology, 208(Pt 5), 799-808.
Newham, D., McPhail, G., Mills, K., & Edwards, R. (1983). Ultrastructural changes after concentric and eccentric contractions of human muscle. Journal of the Neurological Sciences, 61(1), 109-122.
Nilsson, J., & Thorstensson, A. (1987). Adaptability in frequency and amplitude of leg movements during human locomotion at different speeds. Acta Physiologica Scandinavica, 129(1), 107-114.
Nilsson, J., Thorstensson, A., & Halbertsma, J. (1985). Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans. Acta Physiologica Scandinavica, 123(4), 457-475.
Ortega, J. D., & Farley, C. T. (2005). Minimizing center of mass vertical movement increases metabolic cost in walking. Journal of Applied Physiology, 99(6), 2099-2107.
Pivarnik, J., & Sherman, N. (1990). Responses of aerobically fit men and women to uphill/downhill walking and slow jogging. Medicine & Science in Sports & Exercise, 22(1), 127-130.
Prilutsky, B., & Gregor, R. (2001). Swing-and support-related muscle actions differentially trigger human walk-run and run-walk transitions. The Journal of Experimental Biology, 204(Pt 13), 2277-2287.
Ralston, H. (1958). Energy-speed relation and optimal speed during level walking. European Journal of Applied Physiology and Occupational Physiology, 17(4), 277-283.
Raynor, A., Yi, C., Abernethy, B., & Jong, Q. (2002). Are transitions in human gait determined by mechanical, kinetic or energetic factors? Human Movement Science, 21(5-6), 785-805.
Sasaki, K., & Neptune, R. R. (2006). Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed. Gait & Posture, 23(3), 383-390.
Schwane, J., & Armstrong, R. (1983). Effect of training on skeletal muscle injury from downhill running in rats. Journal of Applied Physiology, 55(3), 969-975.
Segers, V., Aerts, P., Lenoir, M., & De Clercq, D. (2006). Spatiotemporal characteristics of the walk-to-run and run-to-walk transition when gradually changing speed. Gait & Posture, 24(2), 247-254.
Staab, J., Agnew, J., & Siconolfi, S. (1992). Metabolic and performance responses to uphill and downhill running in distance runners. Medicine & Science in Sports & Exercise, 24(1), 124-127.
Thorstensson, A., & Roberthson, H. (1987). Adaptations to changing speed in human locomotion: Speed of transition between walking and running. Acta Physiologica Scandinavica, 131(2), 211-214.
Titianova, E., Mateev, P., & Tarkka, I. (2004). Footprint analysis of gait using a pressure sensor system. Journal of Electromyography and Kinesiology, 14(2), 275-281.
Tulloh, B. (1998). The role of cross-country in the development of a runner. New Studies in Athletics, 13, 9-12.
Whitall, J., & Caldwell, G. (1992). Coordination of symmetrical and asymmetrical human gait. Journal of Motor Behavior, 24(4), 339-353.
Yokozawa, T., Fujii, N., & Ae, M. (2007). Muscle activities of the lower limb during level and uphill running. Journal of Biomechanics, 40, 3467-3475.