簡易檢索 / 詳目顯示

研究生: 黃思樺
Huang, Shih-Hua
論文名稱: 利用iTRAQ化學標定搭配質譜分析抗癌藥物投藥的PLC/PRF/5細胞株之差異蛋白質體研究
Differential proteomic analysis of PLC/PRF/5 cell lines treated with anti-cancer drugs by iTRAQ labeling and mass spectrometry
指導教授: 陳頌方
Chen, Sung-Fang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 142
中文關鍵詞: 血管內皮生長因子 (VEGF) 受體抑制劑同重元素相對與絕對定量人類肝腫瘤細胞株等電點聚焦分離儀強陽離子交換層析法鹼性逆相層析法奈米級液相層析質譜細胞間黏附因子1
英文關鍵詞: VEGF receptor tyrosine kinase (RTK) inhibitors, iTRAQ, PLC/PRF/5 cell lines, sIEF, SCX, bRP, nano-LC, mass spectrometry, ICAM-1
論文種類: 學術論文
相關次數: 點閱:167下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 索拉非尼 (拜耳)、舒尼替尼 (輝瑞) 及臨床試驗中藥物AV-951 (樂騁) 均為小分子口服藥物,為血管內皮生長因子 (VEGF) 受體酪胺酸激酶的抑制劑,其中Sorafenib以及Sunitinib已被核准治療腫瘤生長以及血管新生。本實驗運用同重元素相對和絕對定量 (iTRAQ) 試劑搭配質譜分析的技術,針對三種不同的抗癌藥物投藥於人類肝腫瘤細胞株 (PLC/PRF/5) 的蛋白質體研究。為了降低樣品分析時的複雜度,提升低含量蛋白質/胜肽被鑑定到的機會,iTRAQ標定的胜肽樣品會先經由等電點聚焦分離儀 (OFFGEL fractionator)、強陽離子交換層析法 (SCX) 以及鹼性逆相層析法 (bRP) 作第一維分離,爾後再進行奈米級液相層析連接質譜儀進行分析,於生物性重複實驗之中,共鑑定到2010個蛋白質以及11233個不重複的胜肽。從鑑定到蛋白質總數之百分比評估,等電點聚焦分離儀、強陽離子交換層析法以及鹼性逆相層析法分別鑑定到80%、30%以及81%的蛋白質。相較於只使用鹼性逆相層析法,增加兩種分離方法可多鑑定到23%的蛋白質。索拉非尼與其他兩組抗癌藥物相比之蛋白質,使用GeneGO生物資訊軟體進行預測,挑選與神經退化疾病相關的蛋白質,利用定量聚合酶連鎖反應進行確認。其中,細胞間黏附因子1 (intercellular adhesion molecule 1, ICAM-1) 使用定量聚合酶連鎖反應及西方墨點法的驗證結果與本實驗iTRAQ上調定量結果一致,其功能為穩定細胞-細胞間的作用,以及促使白血球內皮細胞的輪迴,於病理發炎及免疫相關疾病扮演重要角色。

    Sorafenib (Bayer/Onyx), sunitinib (Pfizer) and av-951 (Aveo) are oral small molecular VEGF receptor tyrosine kinase (RTK) inhibitors, and two of them are approved to treat anti-angiogenesis. In this study, we used isobaric tags for relative and absolute quantitation (iTRAQ) to investigate the protein profiles in PLC/PRF/5 cell lines treated with these three anti-cancer drugs (sorafenib, sunitinib, av-951). In order to reduce sample complexity, iTRAQ labeled tryptic peptides were fractionated by solution isoelectric focusing (sIEF), strong cation exchange chromatography (SCX) or basic reverse phase chromatography (bRP), followed by nano-LC tandem mass spectrometric analysis. A total of 11233 unique peptides were identified which were associated with 2010 proteins in two biological replicate experiments. The solution-IEF, SCX and basic RP methods permitted a total of 80%, 30% and 81% of proteins to be identified respectively. The results were complementary, and allowed more than 23% more of proteins to be identified, when compared with basic reverse phase chromatography alone. Among them, differentially expressed proteins were selected for GeneGO analysis. Proteins that associated with neurodegenerative diseases are selected for other verifications. Intercellular adhesion molecule 1 (ICAM-1) plays an important role in the pathogenesis of inflammatory or immune-related diseases, had shown up-regulated results consistently with iTRAQ, RT-PCR and western blotting.

    目錄 I 圖目錄 V 表目錄 VII 英文縮寫 IX Abstract XI 中文摘要 XII 第一章 序論 1 第一節 肝癌 1 第二節 抗癌藥物 1 (一) Sorafenib (BAY 43-9006, Nexavar) 1 (二) Sunitinib (SU-11248, Sutent) 2 (三) AV-951 2 第三節 液相層析分離技術 2 (一)逆相層析法 3 (二)液相等電點聚焦法 4 (三)強陽離子交換層析法 4 (四)鹼性逆相層析法 5 第四節 質譜儀技術 5 第五節 蛋白質身分鑑定 7 (一)胜肽質量指紋(peptide mass fingerprinting, PMF) 8 (二)胜肽碎片指紋(peptide fragment fingerprinting, PFF) 8 第六節 差異蛋白質體學 (differential proteomics) 8 (一)二維凝膠電泳 (two-dimensional gel electrophoresis, 2D-GE) 9 (二)液相層析分離配合蛋白質標定法 9 第七節 研究動機 11 第二章 實驗材料與方法 13 第一節 樣品 13 第二節 樣品純化濃縮 13 第三節 蛋白質濃度測定 (Bradford Protein Assay) 14 第四節 蛋白質水解 (in-solution digestion) 與化學標定iTRAQTM試劑 15 第五節 第一維分餾策略 16 (一)等電聚焦分級分離儀 (solution isoelectric focusing, sIEF) 16 (二)強陽離子交換層析法 (strong cationic exchange chromatography, SCX) 18 (三)鹼性逆相層析法 (basic reverse phase chromatography, bRP) 19 第六節 自製型碳18離心管柱 (C18 spin column) 20 第七節 奈米級液相層析電噴灑游離串聯式質譜儀 (nanoLC ESI tandem mass spectrometry) 21 第八節 資料分析 (data analysis) 25 第九節 西方墨點法 (Western blotting) 25 第三章 實驗結果與討論 29 3-1 等電聚焦分離儀系統探討 29 第一節 胜肽鑑定 29 第二節 分離胜肽等電點之探討 29 第三節 分離之解析度 30 3-2 iTRAQ標定搭配2D LC-MS/MS分析不同抗癌藥物投藥的肝腫瘤細胞株 30 第一節 蛋白質樣品濃度測定 30 第二節 不同分餾策略對於iTRAQ標定胜肽樣品之結果 31 (一)第一維分離策略 31 (二)分離策略結果比較 33 (三)分離策略之正交性 (Orthogonality) 33 (四)分離策略之互補性 (Complementarity) 34 第三節 蛋白質相對定量 34 第四節 蛋白質相關生物作用途徑 35 第五節 西方墨點法驗證結果 37 第四章 實驗結果與討論 (sIEF+bRP) 38 第一節 分離策略之互補性 38 第二節 蛋白質相對定量 38 第五章 結論與未來展望 39 參考文獻 41 附圖 50 附表 83

    1. Torre, L. A.; Bray, F.; Siegel, R. L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A., Global cancer statistics, 2012. CA: a cancer journal for clinicians 2015, 65 (2), 87-108.
    2. Amarapurkar, D. N.; Hashimoto, E.; Lesmana, L. A.; Sollano, J. D.; Chen, P. J.; Goh, K. L., How common is non-alcoholic fatty liver disease in the Asia-Pacific region and are there local differences? Journal of gastroenterology and hepatology 2007, 22 (6), 788-793.
    3. Wiegand, J.; Berg, T., The etiology, diagnosis and prevention of liver cirrhosis: part 1 of a series on liver cirrhosis. Deutsches Arzteblatt international 2013, 110 (6), 85-91.
    4. Bracht, T.; Schweinsberg, V.; Trippler, M.; Kohl, M.; Ahrens, M.; Padden, J.; Naboulsi, W.; Barkovits, K.; Megger, D. A.; Eisenacher, M.; Borchers, C. H.; Schlaak, J. F.; Hoffmann, A. C.; Weber, F.; Baba, H. A.; Meyer, H. E.; Sitek, B., Analysis of disease-associated protein expression using quantitative proteomics-fibulin-5 is expressed in association with hepatic fibrosis. Journal of proteome research 2015, 14 (5), 2278-2786.
    5. Musumeci, F.; Radi, M.; Brullo, C.; Schenone, S., Vascular endothelial growth factor (VEGF) receptors: drugs and new inhibitors. Journal of medicinal chemistry 2012, 55 (24), 10797-10822.
    6. Suo, A.; Zhang, M.; Yao, Y.; Zhang, L.; Huang, C.; Nan, K.; Zhang, W., Proteome analysis of the effects of sorafenib on human hepatocellular carcinoma cell line HepG2. Medical oncology 2012, 29 (3), 1827-1836.
    7. Calvisi, D. F.; Ladu, S.; Gorden, A.; Farina, M.; Conner, E. A.; Lee, J. S.; Factor, V. M.; Thorgeirsson, S. S., Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006, 130 (4), 1117-1128.
    8. Liu, L.; Cao, Y.; Chen, C.; Zhang, X.; McNabola, A.; Wilkie, D.; Wilhelm, S.; Lynch, M.; Carter, C., Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer research 2006, 66 (24), 11851-11858.
    9. Semela, D.; Dufour, J. F., Angiogenesis and hepatocellular carcinoma. Journal of hepatology 2004, 41 (5), 864-880.
    10. Jr, R. R., Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochemical and biophysical research communications 2007, 356 (2), 323-328.
    11. Nakamura, K.; Taguchi, E.; Miura, T.; Yamamoto, A.; Takahashi, K.; Bichat, F.; Guilbaud, N.; Hasegawa, K.; Kubo, K.; Fujiwara, Y.; Suzuki, R.; Kubo, K.; Shibuya, M.; Isae, T., KRN951, a highly potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, has antitumor activities and affects functional vascular properties. Cancer research 2006, 66 (18), 9134-9142.
    12. Chiu, C. W.; Chen, S. F., Peptide Fractionation by Multidimensional Liquid-based Separation Techniques for Proteomic Analysis. CHEMISTRY 2015, 73 (1), 1-10.
    13. Yates, J. R., Multidimensional LC Separations in Shotgun Proteomics. Anal. Chem. 2008, 80 (19), 7187–7193.
    14. Slebos, R. J. C., ; ; Brock, J. W. C.; Winters, N. F.; Stuart, S. R.; Martinez, M. A.; Li, M.; Chambers, M. C.; Zimmerman, L. J.; Ham, A. J.; Tabb, D. L.; Liebler, D. C., Evaluation of Strong Cation Exchange versus Isoelectric Focusing of Peptides for Multidimensional Liquid Chromatography-Tandem Mass Spectrometry. Journal of proteome research 2008, 7, 5286–5294.
    15. Gruber, K. A.; Stein, S.; Brink, L.; Radhakrishnan, A.; Udenfriend, S., Fluorometric assay of vasopressin and oxytocin: A general approach to the assay of peptides in tissues. Proc. Nat. Academy Sci. 1976, 73, 1314-1318.
    16. Xu, P.; Duong, D. M.; Peng, J., Systematical Optimization of Reverse-Phase Chromatography for Shotgun Proteomics. Journal of proteome research 2009, 8, 3944-3950.
    17. Cargile, B. J.; Sevinsky, J. R.; Essader, A. S.; Stephenson, J. L.; Jr.;; Bundy, J. L., Immobilized pH Gradient Isoelectric Focusing as a First-Dimension Separation in Shotgun Proteomics. Journal of Biomolecular Techniques 2005, 16, 181–189.
    18. Heller, M.; Michel, P. E.; Morier, P.; Crettaz, D.; Wenz, C.; Tissot, J. D.; Reymond, F.; Rossier, J. S., Two-stage Off-Gel isoelectric focusing: protein followed by peptide fractionation and application to proteome analysis of human plasma. Electrophoresis 2005, 26 (6), 1174-1188.
    19. Agilent 3100 OFFGEL Fractionator.
    20. Nägele, E.; Vollmer, M.; Hörth, P., Improved 2D Nano-LC/MS for Proteomics Applications: A Comparative Analysis Using Yeast Proteome. Journal of Biomolecular Techniques 2004, 15, 134-143.
    21. Pepaj, M.; Wilson, S. R.; Novotna, K.; Lundanes, E.; Greibrokk, T., Two-dimensional capillary liquid chromatography: pH gradient ion exchange and reversed phase chromatography for rapid separation of proteins. Journal of chromatography. A 2006, 1120 (1-2), 132-141.
    22. Washburn, M. P.; Wolters, D.; Yates, J. R., Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Publishing Group 2001, 19, 242-247.
    23. Gilar, M.; Olivova, P.; Daly, A. E.; Gebler, J. C., Orthogonality of Separation in Two-Dimensional Liquid Chromatography. Anal. Chem. 2005, 77, 6426-6434.
    24. Gilar, M.; Olivova, P.; Daly, A. E.; Gebler, J. C., Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. Journal of separation science 2005, 28 (14), 1694-1703.
    25. Yang, F.; Shen, Y.; Camp, D. G.; Smith, R. D., High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert review of proteomics 2012, 9 (2), 129-134.
    26. Dwivedi, R. C.; Spicer, V.; Harder, M.; Antonovici, M.; Ens, W.; Standing, K. G.; Wilkins, J. A.; Krokhin, O. V., Practical Implementation of 2D HPLC Scheme with Accurate Peptide Retention Prediction in Both Dimensions for High-Throughput Bottom-Up Proteomics. Anal. Chem. 2008, 80, 7036-7042.
    27. Stein, D. R.; Hu, X.; McCorrister, S. J.; Westmacott, G. R.; Plummer, F. A.; Ball, T. B.; Carpenter, M. S., High pH reversed-phase chromatography as a superior fractionation scheme compared to off-gel isoelectric focusing for complex proteome analysis. Proteomics 2013, 13 (20), 2956-2966.
    28. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71.
    29. Karas, M.; Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988, 60 (20), 2299-2301.
    30. Ikonomou, M. G.; Blades, A. T.; Kebarle, P., Electrospray-Ion Spray: A Comparison of Mechanisms and Performance Anal. Chem. 1991, 63, 1989-1998.
    31. Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R., A Statistical Model for Identifying Proteins by Tandem Mass Spectrometry. Anal. Chem. 2003, 75, 4646-4658.
    32. Peng, J.; Elias, J. E.; Thoreen, C. C.; Licklider, L. J.; Gygi, S. P., Evaluation of Multidimensional Chromatography Coupled with Tandem Mass Spectrometry (LC/LC-MS/MS) for Large-Scale Protein Analysis: The Yeast Proteome. Journal of proteome research 2003, 2, 43-50.
    33. Guo, T.; Gan, C. S.; Zhang, H.; Zhu, Y.; Kon, O. L.; Sze, S. K., Hybridization of Pulsed-Q Dissociation and Collision-Activated Dissociation in Linear Ion Trap Mass Spectrometer for iTRAQ Quantitation. Journal of proteome research 2008, 7, 4840-4831.
    34. Edman, P., A method for the determination of amino acid sequence in peptides. Arch Biochem. 1949, 22, 475.
    35. Sagliocco, F.; Guillemot, J. C.; Monribot, C.; Capdevielle, J.; Perrot, M.; Ferran, E.; Ferrara, P.; Boucherie, H., Identification of proteins of the yeast protein map using genetically manipulated strains and peptide-mass fingerprinting. Yeast. 1996, 12, 1519-1533.
    36. Henzel, W. J.; BilleciI, T. M.; Stults, J. T.; Wong, S. C.; Grimley, C.; Watanabe, C., Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA 1993, 90, 5011-5015.
    37. Wasinger, V. C.; Cordwell, S. J.; Poljak, A. C.; Yan, J. X.; Gooley, A. A.; Wilkins, M. R.; Duncan, M. W.; Harriss, R.; Williams, K. L.; Smith, I. H., Progress with gene-product mapping of the Mollicutes Mycoplasma genitalium. Electrophoresis 1995, 16, 1090-1094
    38. Anderson, N. L.; Anderson, N. G., Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 1998, 19, 1853-1861.
    39. Gygi, S. P.; Corthals, G. L.; Zhang, Y.; Rochon, Y.; Aebersold, R., Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proceedings of the National Academy of Sciences of the United States of America 2000, 97 (17), 9390-9395.
    40. Merril, C. R.; Switzer, R. C.; Van Keuren, M. L., Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain. Proc. Natl. Acad. Sci. USA 1979, 76 (9), 4335-4339.
    41. Gorg, A.; Weiss, W.; Dunn, M. J., Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004, 4 (12), 3665-3685.
    42. Tannu, N. S.; Hemby, S. E., Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat Protoc. 2006, 1 (4), 1732-1742.
    43. Tonge, R.; Shaw, J.; Middleton, B.; Rowlinson, R.; Rayner, S.; Young, J.; Pognan, F.; Hawkins, E.; Currie, I.; Davison, M., Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 2001, 1, 377-396.
    44. Ong, S. E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M., Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Molecular & cellular proteomics : MCP 2002, 1, 376-386.
    45. Boersema, P. J.; Raijmakers, R.; Lemeer, S.; Mohammed, S.; Heck, A. J. R., Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nature Protocols 2009, 4, 484 - 494.
    46. Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature biotechnology 1999, 17, 994-999.
    47. Ross, P. L.; Huang, Y. N.; Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D. J., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & cellular proteomics : MCP 2004, 3 (12), 1154-1169.
    48. Pichler, P.; Ko¨ cher, T.; Holzmann, J.; Mazanek, M.; Taus, T.; Ammerer, G.; Mechtler, K., Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. Anal. Chem. 2010, 82, 6549–6558.
    49. Gan, C. S.; Chong, P. K.; Pham, T. K.; Wright, P. C., Technical, Experimental, and Biological Variations in Isobaric Tags for Relative and Absolute Quantitation (iTRAQ). Journal of proteome research 2007, 6, 821-827.
    50. Kaur, P.; Rizk, N. M.; Ibrahim, S.; Younes, N.; Uppal, A.; Dennis, K.; Karve, T.; Blakeslee, K.; Kwagyan, J.; Zirie, M.; Ressom, H. W.; Cheema, A. K., iTRAQ-based quantitative protein expression profiling and MRM verification of markers in type 2 diabetes. Journal of proteome research 2012, 11 (11), 5527-5539.
    51. Zieske, L. R., A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. Journal of experimental botany 2006, 57 (7), 1501-1508.
    52. Chiu, C. W.; Chang, C. L.; Chen, S. F., Evaluation of peptide fractionation strategies used in proteome analysis. Journal of separation science 2012, 35 (23), 3293-3301.
    53. Chenau, J.; Michelland, S.; Sidibe, J.; Seve, M., Peptides OFFGEL electrophoresis: a suitable pre-analytical step for complex eukaryotic samples fractionation compatible with quantitative iTRAQ labeling. Proteome science 2008, 6, 1-8.
    54. Demydenko, D.; Berest, I., Expression of galectin-1 in malignant tumors. Exp Oncol 2009, 31 (2), 74-79.
    55. Yeh, C. C.; Hsu, C. H.; Shao, Y. Y.; Ho, W. C.; Tsai, M. H.; Feng, W. C.; Chow, L. P., Integrated SILAC and iTRAQ quantitative proteomic analysis identifies galectin-1 as a potential biomarker for predicting sorafenib resistance in liver cancer. Molecular & cellular proteomics : MCP 2015, 14, 1527-1545.
    56. Aitken, A., Post-translational modification of 14-3-3 isoforms and regulation of cellular function. Seminars in cell & developmental biology 2011, 22 (7), 673-680.
    57. Li, Z.; Zhao, J.; Du, Y.; Park, H. R.; Sun, S. Y.; Bernal-Mizrachi, L.; Aitken, A.; Khuri, F. R.; Fu, H., Down-regulation of 14-3-3zeta suppresses anchorage-independent growth of lung cancer cells through anoikis activation. Proceedings of the National Academy of Sciences of the United States of America 2008, 105 (1), 162-167.
    58. Liang, S.; Shen, G.; Liu, Q.; Xu, Y.; Zhou, L.; Xiao, S.; Xu, Z.; Gong, F.; You, C.; Wei, Y., Isoform-specific expression and characterization of 14-3-3 proteins in human glioma tissues discovered by stable isotope labeling with amino acids in cell culture-based proteomic analysis. Proteomics. Clinical applications 2009, 3 (6), 743-753.

    無法下載圖示 本全文未授權公開
    QR CODE