簡易檢索 / 詳目顯示

研究生: 陳鳴桂
論文名稱: 銀奈米粒子輔助之矽微米結構應用於水分解之光陰極
指導教授: 胡淑芬
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 67
中文關鍵詞: 水分解矽微米柱電漿
英文關鍵詞: water splitting, silicon microwires, plasmon
論文種類: 學術論文
相關次數: 點閱:115下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,我們將p型矽晶片蝕刻成矽微米柱陣列,由於矽微米柱結構減少了電子傳輸至與水介面之距離與提供電子單一傳輸方向,故增強光電流訊號。此外,我們將電漿粒子修飾於矽微米柱上藉表面電漿共振效應增加水分解效率。表面電漿共振具兩種現象,其一,電漿粒子上鄰近費米能階之電子被激發至較高能階形成熱電子,且足以克服蕭基能障進入矽微米柱之導電帶,致使增加光電流。第二,產生電場促使矽微米柱上之表面產生電子-電洞對,並減少電子-電洞再復合現象。於表面電漿共振之效應下,有效提升光電流,於參考電極為銀/氯化銀電極,外加偏壓-1 V下,可測得光電流約42 mA/cm2 。

    In this study, we etched p-type silicon wafer to fabricate silicon microwires. The photocurrent of silicon wires is enhanced owning to the shorter diffusion length for minor carrier and the single conduction direction for major carrier. In addition, we utilized plasmonic nanoparticles to modify silicon wires to further promote its water splitting efficiency by surface plasmon resonance. The electrons near the Fermi level of the plasmonic nanoparticles are excited to higher level state forming hot electrons by surface plasmon resonance (SPR). The hot electrons overcome the Schottky barrier injecting into the conduction band of Si wires and increase its photocurrent. Besides, the electromagnetic fields generated from SPR increase the possibility of the electron-hole pairs forming near the surface of Si wires and decrease their recombination. Under the assistance from the SPR, the water splitting efficiency of could be strongly enhanced. The significant enhancement of the photocurrent to 42 mA/cm2 is observed on the silver nanoparticles modified silicon wires.

    總目錄 總目錄………………………………………………………………………………………………………………………………………………I 圖目錄……………………………………………………………………………………………………………………………………… III 表目錄…………………………………………………………………………………………………………………………………………VII 第一章 緒論…………………………………………………………………………………………………………………………………1 1.1 光催化水分解介紹……………………………………………………………………………………………………………3 1.1.1 基礎原理…………………………………………………………………………………………………………………………3 1.1.2 四大需求…………………………………………………………………………………………………………………………5 1.1.3 改善方式…………………………………………………………………………………………………………………………7 1.2 研究動機與目的………………………………………………………………………………………………………………18 1.2.1 期刊論文回顧………………………………………………………………………………………………………………18 1.2.2 專利回顧………………………………………………………………………………………………………………………30 1.3 本研究特色………………………………………………………………………………………………………………………36 第二章 元件製作與儀器分析…………………………………………………………………………………………………38 2.1元件基板………………………………………………………………………………………………………………………………38 2.2 元件製作……………………………………………………………………………………………………………………………38 2.2.1硬式罩幕層 (hard mask)……………………………………………………………………………………39 2.2.1.1 晶圓清洗…………………………………………………………………………………………………………………39 2.2.1.2 沉積氧化層……………………………………………………………………………………………………………40 2.2.1.3 光阻塗佈…………………………………………………………………………………………………………………41 2.2.1.4 曝光與顯影……………………………………………………………………………………………………………43 2.2.1.4 蝕刻氧化層……………………………………………………………………………………………………………45 2.2.1.5 去除光阻…………………………………………………………………………………………………………………47 2.2.2 形成矽微米柱陣列………………………………………………………………………………………………………48 2.2.3 製作背電極…………………………………………………………………………………………………………………50 2.2.4 光陰極製作…………………………………………………………………………………………………………………51 2.2.5 修飾銀粒子…………………………………………………………………………………………………………………52 第三章 結果與討論…………………………………………………………………………………………………………………54 3.1 元件結構……………………………………………………………………………………………………………………………54 3.2 紫外線-可見光吸收光譜 (ultraviolet - visible light absorption spectra)………………………56 3.3 光電化學特性量測…………………………………………………………………………………………………………58 第四章 總結………………………………………………………………………………………………………………………………62 參考文獻………………………………………………………………………………………………………………………………………63 圖目錄 圖1.1 石油價格圖………………………………………………………………………………………………………………………1 圖1.2 本多藤嶋效應之裝置圖與電流-電壓圖……………………………………………………………………2 圖1.3 光催化反應產氫技術……………………………………………………………………………………………………3 圖1.4. 常見之光觸媒半導體材料之能隙值…………………………………………………………………………6 圖1.5 常見半導體電子-電洞之遷移率…………………………………………………………………………………6 圖1.6 太陽光光譜圖…………………………………………………………………………………………………………………7 圖1.7 電子-電洞再結合之示意圖…………………………………………………………………………………………8 圖1.8 電子受體共催化劑之金奈米粒子………………………………………………………………………………9 圖1.9 光催化水分解犧牲試劑之示意圖………………………………………………………………………………9 圖1.10 能帶摻雜示意圖…………………………………………………………………………………………………………11 圖1.11 GaN-ZnO固熔體之能隙變化…………………………………………………………………………………12 圖1.12 量子侷限效應之示意圖……………………………………………………………………………………………13 圖1.13 磷化銦量子點修飾之氧化鋅奈米柱陣列其光電流曲線圖………………………………14 圖1.14 矽與二氧化鈦之樹狀結構與其能帶結構……………………………………………………………15 圖1.15. 金屬奈米粒子之表面電漿共振示意圖………………………………………………………………15 圖1.16 熱電子注入之機制示意圖………………………………………………………………………………………16 圖1.17 電漿誘導場效應之機制示意圖………………………………………………………………………………17 圖1.18 矽材料作水分解產氫之每年國際期刊發表總數………………………………………………18 圖1.19 矽材料作水分解產氫之每年國際期刊引用次數………………………………………………18 圖1.20 (A-F)製程步驟示意圖與掃描式電子顯微鏡圖(G)剛成長及(H)修飾鎳-鉬(Ni-Mo)粒子之矽微米柱陣列………………………………………………………………………………………………19 圖1.21 不同鎳-鉬(Ni-Mo)粒子之沉積方式於掃描式電子顯微鏡圖………………………20 圖1.22 修飾鎳-鉬粒子之矽微米柱陣列光陰極之光電流與穩定性測試……………………21 圖1.23 矽/氧化鐵奈米柱陣列之(a)掃描式電子顯微鏡圖與 (b)穿隧式電子顯微鏡圖…………………………………………………………………………………………………………22 圖1.24 矽/氧化鐵奈米柱陣列之能帶結構圖與光電流圖……………………………………………23 圖1.25 Si/InxGa1-xN奈米柱陣列之製程步驟示意圖………………………………………………24 圖1.26 Si/InxGa1-xN奈米柱陣列之掃描式電子顯微鏡圖………………………………………25 圖1.27 Si/InxGa1-xN奈米柱陣列之x光繞射圖譜……………………………………………………26 圖1.28 Si/InxGa1-xN奈米柱陣列作為光陽極之PEC量測………………………………………26 圖1.29 2005-2013年各國發表光觸媒水分解專利之比例…………………………………………35 圖2.1 低壓化學氣相沉積系統………………………………………………………………………………………………40 圖2.2 二氧化矽層沉積於p型矽晶片之示意圖…………………………………………………………………41 圖2.3 光阻塗佈與顯影機………………………………………………………………………………………………………42 圖2.4 光阻塗佈於氧化層之示意圖……………………………………………………………………………………42 圖2.5 I-line曝光系統………………………………………………………………………………………………………44 圖2.6 顯影後之示意圖…………………………………………………………………………………………………………44 圖2.7 TEL乾式蝕刻機台………………………………………………………………………………………………………46 圖2.8 完成二氧化矽蝕刻之示意圖……………………………………………………………………………………46 圖2.9 完成光阻去除之示意圖………………………………………………………………………………………………47 圖2.10完成光阻去除之樣品於不同放大倍率下之線上電子顯微鏡圖…………………………48 圖2.11 TCP乾式蝕刻矽機台…………………………………………………………………………………………………49 圖2.12 感應耦合式蝕刻系統………………………………………………………………………………………………49 圖2.13 (A)與(B)為深度12 μm之矽微米柱,(C)與(D)分別為近1 μm與3 μm之矽微米柱………………………………………………………………………………………………………………………………………50 圖2.14 電子槍金屬蒸鍍系統………………………………………………………………………………………………51 圖2.15 (A)與(B)分別為光陰極之正面與反面………………………………………………………………52 圖2.16 矽微米柱長度10 μm之光陰極浸泡於硝酸銀溶液30 sec後之電子顯微鏡圖。(A)為俯視圖;(B)為頗面圖;(C-E)分別為矽微米柱上、中與下段之局部放 大圖。……………………………………………………………………………………………………………………………………………53 圖3.1 (A)與(B)為深度12 μm之矽微米柱;(C)與(D)分別為近1 μm與3 μm之矽微米柱。………………………………………………………………………………………………………………………………………55 圖3.2 矽微米柱長度10 μm之光陰極浸泡於硝酸銀溶液30 sec後之電子顯微鏡……………………………………………………………………………………………………………………………………………………55 圖3.3 不同長度1 μm、3 μm與12 μm矽微米柱陣列之紫外線-可見光吸收光譜……………………………………………………………………………………………………………………………………………………57 圖3.4 長度12 μm之矽微米柱陣列修飾不同秒數銀粒子之紫外線-可見光吸收光 譜………………………………......……………………………………………………………………………………………………57 圖3.5 長度分別為1 μm、3 μm與12 μm之矽微米柱陣列所得之光電流………………59 圖3.6 分別用不同時間秒數修飾銀粒子於長度12 μm之矽微米柱陣列所得之光電流……………………………………………………………………………………………………………………………………………………59 圖3.7 長度12 μm之純矽微米柱外加偏壓-1 V下,照光與非照光之光電流穩定性量測………………………………………………………………………………………………………………………………………………60 圖3.8 修飾30秒銀粒子之長度為12 μm矽微米柱外加偏壓-1 V下之照光與非照光之光電流………………………………………………………………………………………………………………………………………60 圖3.9 修飾30秒銀粒子且長度為12μm矽微米柱陣列之氫氣產生量…………………………61 表目錄 表1-1 以矽為主體之水分解產氫光觸媒近5年之文獻……………………………………………………28 表1-2 觸媒致水分解專利地圖………………………………………………………………………………………………31 表2-1 本研究使用矽基板之參數…………………………………………………………………………………………38 表2-2 氧化層沉積前之清洗步驟…………………………………………………………………………………………39 表2-3 蝕刻二氧化矽參數………………………………………………………………………………………………………45

    [1] 吳晟, 能原報導, 2月號 (2004)
    [2] 黃新薰等著, 從生命週期觀點探討國內私人小客車之能源消耗與溫室氣體排放之, 研究交通部運輸研究所 (2012)
    [3]http://www.businessinsider.com/well-this-isnt-going-to-be-good-for-the-european-economy-2012-2
    [4] 曲新生等著, 產氫與儲氫技術, 五南圖書出版股份有限公司 (2007)
    [5] A. Fujishima, K. Honda, ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE, Nature, 238 (1972) 37-+.
    [6] 劉怡君, 摻雜碳之α-Fe2O3薄膜合成及水分解應用,國立台北科技大學資源工程研究所碩士論文 (2010)
    [7] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38 (2009) 253-278.
    [8] M.G. Roel van de Krol, Photoelectrochemical Hydrogen Production, Springer, Dordrecht, 2012.
    [9] http://en.wikipedia.org/wiki/File:Solar_Spectrum.png
    [10] V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration, J. Am. Chem. Soc., 126 (2004) 4943-4950.
    [11] K. Maeda, K. Domen, Solid Solution of GaN and ZnO as a Stable Photocatalyst for Overall Water Splitting under Visible Light, Chem. Mat., 22 (2010) 612-623.
    [12] H.M. Chen, C.K. Chen, C.C. Lin, R.S. Liu, H. Yang, W.S. Chang, K.H. Chen, T.S. Chan, J.F. Lee, D.P. Tsai, Multi-Bandgap-Sensitized ZnO Nanorod Photoelectrode Arrays for Water Splitting: An X-ray Absorption Spectroscopy Approach for the Electronic Evolution under Solar Illumination, J. Phys. Chem. C, 115 (2011) 21971-21980.
    [13] C. Liu, J.Y. Tang, H.M. Chen, B. Liu, P.D. Yang, A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting, Nano Lett., 13 (2013) 2989-2992.
    [14] M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Nanostructured plasmonic sensors, Chem. Rev., 108 (2008) 494-521.
    [15] Y.K. Lee, C.H. Jung, J. Park, H. Seo, G.A. Somorjai, J.Y. Park, Surface Plasmon-Driven Hot Electron Flow Probed with Metal-Semiconductor Nanodiodes, Nano Lett., 11 (2011) 4251-4255.
    [16] Z.W. Liu, W.B. Hou, P. Pavaskar, M. Aykol, S.B. Cronin, Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination, Nano Lett., 11 (2011) 1111-1116.
    [17] E.L. Warren, J.R. McKone, H.A. Atwater, H.B. Gray, N.S. Lewis, Hydrogen-evolution characteristics of Ni-Mo-coated, radial junction, n(+)p-silicon microwire array photocathodes, Energy Environ. Sci., 5 (2012) 9653-9661.
    [18] M.T. Mayer, C. Du, D.W. Wang, Hematite/Si Nanowire Dual-Absorber System for Photoelectrochemical Water Splitting at Low Applied Potentials, J. Am. Chem. Soc., 134 (2012) 12406-12409.
    [19] Y.J. Hwang, C.H. Wu, C. Hahn, H.E. Jeong, P.D. Yang, Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties, Nano Lett., 12 (2012) 1678-1682.
    [20] S.W. Boettcher, J.M. Spurgeon, M.C. Putnam, E.L. Warren, D.B. Turner-Evans, M.D. Kelzenberg, J.R. Maiolo, H.A. Atwater, N.S. Lewis, Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes, Science, 327 (2010) 185-187.
    [21] M.C. Putnam, S.W. Boettcher, M.D. Kelzenberg, D.B. Turner-Evans, J.M. Spurgeon, E.L. Warren, R.M. Briggs, N.S. Lewis, H.A. Atwater, Si microwire-array solar cells, Energy Environ. Sci., 3 (2010) 1037-1041.
    [22] J.M. Spurgeon, S.W. Boettcher, M.D. Kelzenberg, B.S. Brunschwig, H.A. Atwater, N.S. Lewis, Flexible, Polymer-Supported, Si Wire Array Photoelectrodes, Adv. Mater., 22 (2010) 3277-+.
    [23] S.W. Boettcher, E.L. Warren, M.C. Putnam, E.A. Santori, D. Turner-Evans, M.D. Kelzenberg, M.G. Walter, J.R. McKone, B.S. Brunschwig, H.A. Atwater, N.S. Lewis, Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays, J. Am. Chem. Soc., 133 (2011) 1216-1219.
    [24] J.R. McKone, E.L. Warren, M.J. Bierman, S.W. Boettcher, B.S. Brunschwig, N.S. Lewis, H.B. Gray, Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes, Energy Environ. Sci., 4 (2011) 3573-3583.
    [25] N.C. Strandwitz, D.B. Turner-Evans, A.C. Tamboli, C.T. Chen, H.A. Atwater, N.S. Lewis, Photoelectrochemical Behavior of Planar and Microwire-Array Si|GaP Electrodes, Adv. Energy Mater., 2 (2012) 1109-1116.
    [26] A. Kargar, K. Sun, Y. Jing, C.M. Choi, H.S. Jeong, Y.C. Zhou, K. Madsen, P. Naughton, S.H. Jin, G.Y. Jung, D.L. Wang, Tailoring n-ZnO/p-Si Branched Nanowire Heterostructures for Selective Photoelectrochemical Water Oxidation or Reduction, Nano Lett., 13 (2013) 3017-3022.
    [27] Z.Z. Xiong, M.J. Zheng, S.D. Liu, L. Ma, W.Z. Shen, Silicon nanowire array/Cu2O crystalline core-shell nanosystem for solar-driven photocatalytic water splitting, Nanotechnology, 24 (2013).
    [28] A. Kargar, K. Sun, Y. Jing, C. Choi, H. Jeong, G.Y. Jung, S. Jin, D.L. Wang, 3D Branched Nanowire Photoelectrochemical Electrodes for Efficient Solar Water Splitting, ACS Nano, 7 (2013) 9407-9415.
    [29] 陳悦芳,林欣瑜,陳郁文。2008。水分解製氫反應之光觸媒。中華民國發明專利第I293037號。
    [30] 陳悦芳,林欣瑜,陳郁文,陳陵援。2008。過渡金屬在銦鎢氧化物光觸媒之製備方法其在水分解反應之應用。中華民國發明專利第I296541號。
    [31] LIEJIN GUO, XIANGHUI ZHANG, DENGWEI JING. 2008. Ni doping Cd*.Zn*.*S micrometre ball photocatalyst and preparation method. CN patent No. 101157044.
    [32] YING YU, LU REN, YURONG DENG, JIALIN LI. 2009. Aquatherm preparation method of high effective catalyst (MIn)xCd2(1-x)S2 for the solar water analysing hydrogen production. CN patent No. 101337188
    [33] 黃朝琴, 張文昇, 鄭名山, 陳佩君, 李岱洲, 吳錦貞, (2008), 光能轉換的觸媒材料及其製備方法, 中華民國發明專利第I374859號.
    [34] SMOLYAKOV GENNADY A, OSINSKI MAREK A. 2012. Efficient hydrogen production by photocatalytic water splitting using surface plasmons in hybrid nanoparticles. U.S. patent No. 20120145532
    [35] CHAOSHENG LI, WENJUN LUO, ZHIGANG ZOU. 2010. BiVO4 nano photoelectrode and application thereof in hydrogen production from water splitting. CN patent No. 101775615.
    [36] NOH TAE HOON, CHO IN SUN, LEE SANG WOOK, KIM DONG WOOK , YIM DONG KYUN, ROH HEE SUK, PARK SANG BACK, SEO SE WON , LEE CHAN WOO, HONG KUG SUN. 2012. Photocatalysts for water splitting and synthesis methods thereof. KR Patent No. 20120011304.
    [37] OH JIHUN, BRANZ HOWARD. 2012. Anti-reflective Nanoporous Silicon For Efficient Hydrogen Production. U.S. Patent No. 20120103825.
    [38] NAKANISHI HARUYUKI, MINEGISHI TSUTOMU, DOMEN KAZUNARI, KUBOTA JUN, MIWADA CHIKA. 2012. Photocatalyst For Water Splitting Comprising Gallium Selenide And Photoelectrode For Water Splitting Comprising The Same. WO Patent No. 2012121034.
    [39] KIM TAE GON, KIM TAE HYUNG, IM SEOUNG JAE. 2012. Visible Light Sensitive Photocatalyst, Method Of Producing The Same, Electrochemical Water Splitting Cell, Water Splitting System, Organic Material Decomposition System Comprising The Same. KR Patent No. 20120138646.
    [40] FUSHENG LIU, NAN LU, LIANLIAN LIU, TING FANG, TAO ZHU, LING LI, WENTAO WANG, HUA HUANG. 2012. Preparation Method For Porous Nano P-cus/n-cds Compound Semiconductor Photochemical Catalyst. CN Patent No. 102489318.
    [41] YAOJUN ZHANG, LICAI LIU, BINGLI WANG, LULU NI, YACHAO WANG, QIAN CHAI, DONGSHENG JING, XIAOZE GU, PEIYAO LIU. 2012. Steel-slag-base Cementing Material And Zinc Oxide Semiconductor Composite Catalyst And Application Thereof To Solar Photocatalytic Water Splitting To Produce Hydrogen. CN Patent No. 102688764.
    [42] LIN PEIBIN, LI QIANG, YANG YU, SU JIACHUN, SHANGGUAN WENFENG, SUN YANGZHOU. 2013. Catalyst Capable Of Responding To Visible Light And Being Used For Producing Hydrogen By Photocatalytic Water Splitting And Preparation Method Of Catalyst. CN Patent No. 102861597.
    [43] 楊金成、吳政三、柯富祥,奈米通訊,8卷1期,2001。

    下載圖示
    QR CODE