簡易檢索 / 詳目顯示

研究生: 王勝均
Sheng-Jun Wang
論文名稱: 應用於停車場之動態車牌定位系統
Dynamic License Plate Localization System Applied to Parking Lots
指導教授: 葉榮木
Yeh, Zong-Mu
蔡俊明
Tsai, Chun-Ming
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 76
中文關鍵詞: 背景相減佈線演算法車牌偵測車牌定位Sobel邊緣偵測
英文關鍵詞: Background Subtraction, Line-Arrangement Algorithm, License Plate Detection, License Plate Localization, Sobel Edge Detection
論文種類: 學術論文
相關次數: 點閱:238下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於商業的發展與交通的便利,人們對於車輛的需求增多;隨著車輛數目不斷上升,卻引發了一連串的交通問題。既然車輛數目如此繁多,失竊案件也頻有所聞,而停車場為容易發生竊盜地點之一。因此,如何利用電腦化系統取代人力,來做好停車場的管理是當前最重要的課題。
    本文提出一套適用於停車場且能夠動態偵測出車牌的方法,包含「移動物偵測模組」、「車牌定位模組」兩大子系統,目的為解決在光線不穩定的環境條件下,不易偵測車牌的情形。系統首先利用移動物偵測模組中的跳躍式背景相減法,將影像序列編號奇數的圖框(Frame)兩兩相減;考慮車牌出現的幾何位置之後,把疑似車牌所在區塊座標,標記在編號偶數張的圖框上;接著,再利用車牌定位模組裡的掃描灰階變異取得次候選區,透過Sobel的垂直邊緣偵測來保留疑似車牌字元的部份區塊。最後,再利用「佈線演算法」和搭配車牌特徵,找出更精確的車牌位置。
    為了驗證此方法,測試的資料庫包括了室外各種天氣如晴天、陰天與雨天以及室內的動態車輛影片。地點為台灣師大的地下停車場及大安森林公園停車場。經由實驗的結果,車牌的正確偵測率高達91.07%,平均處理每張圖框的時間為191ms。

    In recent years, due to the development of the business and the convenience of the traffic, people require more and more cars. As the increase of cars, it brings a series of traffic problems. Since there are numerous cars, the cases of larceny come up frequently, and the parking lots is one of the places that the thefts easier happen. Hence, how to utilize computer systems to replace manpower to manage parking lots well is a very important topic at present.
    This paper has proposed a dynamic license plate detection approach that suits parking lots, including two sub-systems, “Motion Detection Module” and “License Plate Localization Module.” The objective is to solve the problem that license plates are not easy to be detected under the uneven lighting conditions. First, the system uses the jump-background-subtraction of the Motion Detection Module to subtract both odd frames in the image sequences. To consider the geometric location that license plates appear, we determine the suspect location coordinates and label on the even frames. Then, to use the scanning-gray-level-variation inside License Plate Localization Module to get the second candidates, next, make use of the vertical Sobel edge detection to reverse the characters area of suspect license plate. At last, to exploit “Line-Arrangement Algorithm” and license plate features to find out the precise license plate location.
    In order to demonstrate this approach, the test data includes indoor and outdoor dynamic films. (The outdoor weather includes sunny, cloudy, and rainy). And the experimental places are the underground parking lots of NTNU and the parking lots at the Da-An park. Via the result of the experiments, the accurate rate of detecting license plates is high as 91.07%, and the average of processing time is 191 ms per frame.

    目錄 致謝 I 摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究背景與動機 2 1.3 研究目的 5 1.4 論文架構 8 1.5 名詞解釋 8 第二章 文獻探討與回顧 10 2.1基本理論相關介紹 11 2.1.1色彩空間 11 2.1.2二值化 14 2.1.3 邊緣偵測 17 2.1.4 形態學運算 22 2.2 靜態系統相關之研究 25 2.3 動態系統相關研究 29 2.4 綜合分析比較 31 第三章 車牌定位方法 32 3.1系統啟動機制 33 3.2移動物偵測模組 35 3.2.1跳躍式背景相減 37 3.2.2 中值濾波器(Median Filter) 39 3.2.3 簡單連通成分分析 41 3.2.4 考慮車牌幾何位置 43 3.2 車牌定位模組 45 3.3.1 影像前處理 46 3.3.2 掃描灰階變異 46 3.3.3 垂直邊緣偵測 50 3.3.4 佈線演算 53 3.3.5 車牌定位 55 第四章 實驗結果與討論 56 第五章 結論與未來工作 71 參考文獻 73 圖目錄 圖1.1 車牌偵測定位的各種難題 7 圖2.1 RGB色彩立方體的圖示[18] 11 圖2.2 彩色影像的RGB分解與混合圖 12 圖2.3 亮度正規化比較圖 13 圖2.4 Lena的Y成分圖 13 圖2.5 Lena的二值化圖 15 圖2.6 二區的例子[20] 15 圖2.7 車牌邊緣特徵 17 圖2.8 不同色之邊緣概念說明圖[18] 18 圖2.9 拉普拉斯運算子對應的面罩[20] 19 圖2.10 拉普拉斯測邊結果 20 圖2.11 Prewitt測邊遮罩[20] 20 圖2.12 Prewitt測邊結果 20 圖2.13 Sobel測邊遮罩[20] 21 圖2.14 Sobel測邊結果 21 圖2.15 各種邊緣偵測運算子比較 22 圖2.16 3×3的結構化元素 23 圖2.17 侵蝕運算前後比較 23 圖2.18 擴張運算前後比較 24 圖2.19 斷開運算前後比較 25 圖2.20 閉合運算前後比較 25 圖2.21 二值化車牌的水平投影[4] 27 圖2.22 使用紋理特徵尋找車牌[3] 27 圖2.23 車牌影像內的梯度變異[22] 29 圖3.1 本文系統處理架構圖 33 圖3.2 觸發線高度示意圖 34 圖3.3 觸發線區域的演算法則 34 圖3.4 移動物偵測流程 36 圖3.5 跳躍式背景相減示意圖 37 圖3.6 跳躍式背景相減法實際情形 39 圖3.7 3×3遮罩 40 圖3.8 中值濾波器實例 40 圖3.9 中值濾波實例 41 圖3.10 簡單連通成分之x與y座標的找法 42 圖3.11 擷取移動物件 42 圖3.12 CCD與車輛拍攝角度情形 43 圖3.13 考慮車牌幾何位置 44 圖3.14 車牌幾何位置應用情形 44 圖3.15 車牌定位模組流程圖 45 圖3.16 影像前處理步驟 46 圖3.17 觀察掃描線的灰階變化[26] 47 圖3.18 利用一階導數描述灰階變化情形[26] 49 圖3.19 車牌附近掃描圖 50 圖3.20 候選區出現的情形 50 圖3.21 灰階車牌圖 51 圖3.22 具有強烈水平特徵的車輛圖像 51 圖3.23 Sobel邊緣偵測結果比較圖 52 圖3.24 Sobel邊緣偵測加入動態閥值保留圖 53 圖3.25 佈線演算法 53 圖3.26 佈線方式 54 圖3.27 佈線演算結果 54 圖3.28 車牌定位結果 55 圖4.1 實驗全部流程 56 圖4.2 系統觸發動作示意圖 57 圖4.3 移動物偵測模組處理流程(室外環境) 59 圖4.4 移動物偵測模組處理流程(室內環境) 60 圖4.5 掃描灰階變異情形(室外環境) 61 圖4.6 車牌定位模組的後半段情形(室外環境) 62 圖4.7 掃描灰階變異情形(室內環境) 63 圖4.8 產生之車牌次候選區 64 圖4.9 車牌定位模組的後半段情形(室內環境) 64 圖4.10 晴天車牌偵測情形 65 圖4.11 陰天車牌偵測情形 65 圖4.12 雨天車牌偵測情形 66 圖4.13 車牌定位失敗情況之一 69 圖4.14 車牌定位失敗情況之二 70 表目錄 表1.1 民國96年1月至7月台閩地區小客車登記數 1 表1.2 民國96年1月至7月汽車竊盜案件發生數 2 表1.3 現行停車場之管理方式比較 4 表4.1 室外環境實驗數據 67 表4.2 室內停車場環境實驗數據 67 表4.3 本文系統平均處理時間分配 67 表4.4 動態相關文獻比較 68

    [1] Hongliang Bai, Junmin Zhu, and Changping Liu, “A Fast License Plate Extraction Method on Complex Background,” Intelligent Transportation Systems, IEEE Proceedings. Volume 2, 12-15 Page(s):985-987, Oct. 2003.
    [2] Hongliang Bai and Changping Liu, “A Hybrid License Plate Extraction Method Based on Edge Statistics and Morphology,” Pattern Recognition, ICPR 2004. Proceedings of the 17th International Conference on Volume 2, Page(s):831-834 Vol.2, 23-26 Aug. 2004.
    [3] Jun Kong, Xinyue Liu, Yinghua Liu, and Xiaofeng Zhou, “A Novel License Plate Localization Method Based on Textural Feature Analysis,” Signal Processing and Information Technology, Proceedings of the 5th IEEE Internal Symposium on, Page(s):275-279, 18-21 Dec. 2005.
    [4] Premnath Dubey, “Heuristic Approach for License Plate Detection,” Advanced Video and Signal Based Surveillance, AVSS 2005. IEEE Conference on, Page(s):366-370, 15-16 Sept. 2005.
    [5] P.V. Suryanarayana, Suman K. Mitra, Asim Banerjee and Anil K. Roy, “A Morphology Based Approach for Car License Plate Extraction,” INDICON, Annual IEEE, Page(s):24-27, 1-13 Dec. 2005.
    [6] Yungang Zhang, Changshui Zang, “A New Algorithm for Character Segmentation of License Plate,” Intelligent Vehicles Symposium, IEEE Proceedings, Page(s):106-109, 9-11 June 2003.
    [7] 余忠潔,「新的車牌定位方法」,靜宜大學資訊管理研究所,2002。
    [8] Danian Zheng, Yannan Zhao, Jiazin Wang, “An Efficient Method of License Plate Location,” Pattern Recognition Letters 26, Page(s): 2431-2438, 2005.
    [9] 謝君偉教授,多媒體實驗室車牌資料庫。
    http://mmplab.eed.yzu.edu.tw/index.html
    [10] R.C Gonzalez and R.E Woods. Digital Image Processing. 2nd Ed. Prentice-Hall, N.J, 2002.
    [11] Jun-Wei Hsieh, Shih-Hao Yu, Yung-Sheng Chen, “Morphology-based License Plate Detection from Complex Scenes,” Pattern Recognition, 16th International Conference on, Page(s):176-179, 2002.
    [12] M. Raus, L. Kreft, “Reading Car License Plates by the use of Artificial Neural Networks,” Circuits and Systems, Proceedings of the 38th Midwest Symposium on Volume 1, Page(s):538-541 vol.1, 13-16 Aug. 1995.
    [13] 陳麗奾,「在未設限環境下車牌的定位與辨識」,國立台灣師範大學資訊教育研究所,1999。
    [14] Stefano Rovetta, Rodolfo Zunino, “License Plate Localization by Using Vector Quantization,” International Conference on Acoustics, Speech and Signal Processing, 1999.
    [15] Eun Ryung Lee, Pyeoung Kee Kim, Hang Joon Kim, “Automatic Recognition of a Car License Plate Using Color Image Processing,” Proceeding of International Conference on Image Processing, Page(s):62-66, 1994.
    [16] Xu Jianfeng, Li Shaofa, Chen Zhibin, Robotics, “Color Analysis for Chinese Car Plate Recognition,” Intelligent Systems and Signal Processing, IEEE International Conference on Volume 2, Page(s):1312-1316 vol.2, 8-13 Oct. 2003.
    [17] K. M. Kim, B. J. Lee, K. Lyou, and G. T. Park, “The Automatic Recognition of the Plate of Vehicle Using the Correlation Coefficient and Hough Transform,” Journal of Control, Automation and System Engineering, Page(s):511-519, 1997.
    [18] Rafael C. Gonzalez, Richard E. Woods, “Digital Image Processing,” 台灣培生教育出版股份有限公司,2003。
    [19] 黃泰祥,「具備人臉追蹤與辨識功能的一個智慧型數位監視系統」,私立中原大學電子工程學系碩士論文,2004。
    [20] 鐘國亮,「影像處理與電腦視覺」,台灣東華書局股份有限公司,2004。
    [21] Xu Hong-ke, Yu Fu-hua, Jiao Jia-hua, Song Huan-sheng, “A New Approach of the Vehicle License Plate Location,” Parallel and Distributed Computing, Applications and Technology, Sixth International Conference on ,Page(s):1055-157, 05-08 Dec. 2005.
    [22] Sunghoon Kim, Daechul Kim, Younbox Ryu, Gyeonghwan Kim, “A Robust License-Plate Extraction Method under Complex Image Conditions,” Pattern Recognition, Proceedings. 16th International Conference on Volume 3, Page(s):216-219 vol.3, 11-15 Aug. 2002.
    [23] Seiki Yoshimori, Yasue Mitsukura, Minoru Fukumi, Norio Akamatsu, Rajiv Khosal, “License Plate Detection System in Rainy Days,” Computational Intelligence in Robotics and Automation, Proceedings. 2003 IEEE International Symposium on Volume 2, Page(s):972-976, 16-20 July 2003.
    [24] R. Bremannanth, A. Chitra, V. Seetharaman, V.S.L. Nathan, “A Robust Video Based License Plate Recognition System,” Intelligent Sensing and Information Processing, Proceeding of 2005 International Conference on, Page(s):175-180, 4-7 Jan. 2005.
    [25] 鄭則謙,「車庫入侵者偵測與分類」,台北市立教育大學數學資訊教育研究所,2006。
    [26] Xiaobo Lu, Guanghua, Bin Liu, “Localization of Vehicle License Plate Based on Gray Level Variation,” ITS Telecommunications Proceedings, 6th International Conference on, Page(s):1220-1223, June 2006.

    QR CODE