簡易檢索 / 詳目顯示

研究生: 劉駿騰
Liu, Chun-Teng
論文名稱: 越南北部馬河三角洲岩心之碎屑鋯石鈾-鉛定年學研究
Detrital Zircon U-Pb Geochronology of the Cores from the Song Ma Delta, Northern Vietnam
指導教授: 李通藝
Lee, Tung-Yi
口試委員: 李皓揚
Lee, Hao-Yang
葉孟宛
Yeh, Meng-Wan
李通藝
Lee, Tung-Yi
口試日期: 2023/07/25
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 344
中文關鍵詞: 馬河縫合帶華南地塊印支地塊馬河三角洲碎屑鋯石多維尺度化分析離析模型印支期造山事件加里東期造山事件
英文關鍵詞: Song Ma Suture, South China Block, Indochina Block, Song Ma Delta, detrital zircon, Multidimensional scaling, Unmixing model, Indosinian orogeny, Caledonian orogeny
DOI URL: http://doi.org/10.6345/NTNU202400171
論文種類: 學術論文
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 馬河縫合帶(Song Ma Suture)位處華南地塊(South China Block)和印支地塊(Indochina Block)交界處,馬河三角洲(Song Ma Delta)接受了大量來自馬河縫合帶之沉積物。其中的碎屑鋯石應可記錄相關板塊構造事件,將碎屑鋯石年代和周圍構造單元年代比對,應有助於了解馬河縫合帶周遭的大地構造演化。故本研究透過對馬河三角洲五口鑽井岩心之碎屑鋯石,進行雷射剝蝕-感應耦合電漿質譜儀鈾-鉛定年,以製作年代頻譜,和周遭大地構造單元之年代頻譜以傳統視覺方法比對,並引入新興的相異性檢測法( 如 K-S 檢測或 Kuiper 檢測等) 與多維尺度化(Multidimensional scaling, MDS)圖等統計工具及離析(Unmixing)模型,藉以輔助年代特徵之量化比對,期望能了解馬河三角洲之沉積物源演化,並推論可能的大地構造歷史。
    研究結果表明,所有馬河三角洲樣本和周邊大部分印支地塊與華南地塊之大地構造單元相似,皆具有非常強烈的印支期造山事件主要峰值(300–200 Ma)以及強烈的加里東期造山事件次要峰值(490–400 Ma),表明華南地塊與印支地塊可能於490–400 Ma 時,地理位置已經非常接近,使兩者擁有相似的物源;古特提斯海開啟之後,印支造山事件發生,兩地塊再次沿馬河縫合帶聚合,長山帶(Truong Son Belt)發育完成,將印支地塊與部分華南地塊等過去具有相似物源之地體分隔開,後續各自受當地較強的造山事件影響。
    根據前人文獻所發表的馬河三角洲鑽井岩心放射性碳同位素 14 碳定年結果,利用內插法粗略估算得到樣本所在地層年代介於中全新世到晚全新世之間;在距今(西元1950 年)大約6,700 年前,紅河或其支流直接流入馬河三角洲北部區域;到了距今約3,100 年前,紅河並未繼續供應沉積物至馬河三角洲,而使馬河上游成為馬河三角洲沉積物之唯一物源。然而,距今約 1,500 年前,馬河三角洲南方的藍江開始有沉積物輸送至馬河三角洲南部區域。故馬河三角洲北方與南方區域曾經分別受紅河及藍江影響,因受影響區域相對侷限,推論沿岸流造成影響較小,此影響主要來自河流直接流入;然離析模型結果表明,此影響亦不大,馬河三角洲沉積物之主要物源來自於其上游桑怒區(Sam Nua zone)。
    井位 LK5 中顆粒較粗的樣本所含鋯石有較大顆的傾向,年代有較輕的趨勢;而顆粒較細的樣本內含的鋯石則有較小顆的傾向,年代有較老的趨勢,顯示流體動力分化對礦物顆粒大小及年代可能的影響,然而,尚無法完全排除物源變化造成的效應。
    本研究導入的新興統計工具及離析模型等有良好的輔助功能,提供的結果具有一定可信度,同時使用多種工具相互驗證,配合傳統的視覺比較方法及對地質背景的了解,研究者能夠進行更貼近實際情況的推論,這些工具未來無疑是沉積物物源示蹤研究進展的重要推手。

    It is commonly believed that the Song Ma Suture is the boundary between the South China Block and the Indochina Block. Therefore, the Song Ma Suture is a valuable research target for better understanding the tectonic evolution of these two blocks. The Song Ma Delta collects a large amount of sediment from the Song Ma Suture, which contains abundant detrital zircons recording many plate tectonic events. Comparing the dating results derived from these zircons between the Song Ma Delta and the surrounding tectonic units can improve the understanding of the tectonic evolution around the Song Ma Suture. Accordingly, this study commences dating the detrital zircons collected from five drilling cores in the Song Ma Delta using the U-Pb method with the laser ablation-inductively coupled plasma mass spectrometer (LA-ICP-MS), acquiring age spectra of zircons, which are then compared with those from surrounding tectonic units through visualization. Additionally, this study applies a newly developed Unmixing model and statistical tools, including dissimilarity measurement (such as the K-S test or Kuiper test) and Multidimensional Scaling, to aid in quantified comparison between age signatures
    and improve the understanding of the provenance evolution of the Song Ma Delta and infer the possible tectonic history of the South China Block and the Indochina Block along the Song Ma Suture.
    Results indicate that all samples from the Song Ma Delta are similar to those from the surrounding tectonic units in the South China Block and the Indochina Block, which exhibit a dominant peak of the Indosinian orogeny (300–200 Ma) and a strong secondary peak of the Caledonian orogeny (490–400 Ma). This suggests that during 490–400 Ma, the South China Block might be close with the Indochina Block, resulting in a similiar provenance. After the opening of the Paleo-Tethys Ocean, these two blocks converged again along the Song Ma Suture during the Indosinian orogeny and built the Truong Son Belt, which separated the terranes sharing the similiar provenance in the Indochina Block and part of the South China Block. These terranes have been individually impacted by sequential local orogenic events.
    The stratigraphic ages, calculated through interpolation between radioactive 14C dating from previous studies, suggest that all samples collected by this study were deposited during the Middle to Late Holocene. Approximately 6,700 years before the present (1950 A.D.), the Red River or its distributaries directly flowed into the northern part of the Song Ma Delta. This continued until approximately 3,100 years before the present when the Red River ceased to feed sediment to the Song Ma Delta. Subsequently, the Song Ma upstream became the sole sedimentary source for the Song Ma Delta. However, approximately 1,500 years before the present, to the south of the Song Ma Delta, the Song Lam started to transport sediment to the southern part of the Song Ma Delta. The effect caused by the Red River and the Song Lam on the northern and southern parts of the Song Ma Delta, respectively, was locally confined, and the longshore currents could barely transport sediment to the Song Ma Delta. This suggests that such an effect mainly came from rivers rather than longshore currents transporting sediments. However, results from the Unmixing model indicate this effect was very weak and suggest that the major source of sediment for the Song Ma Delta is the upstream Sam Nua zone.
    Samples with coarser grains in the drilling core LK5 are composed of zircons with larger grain sizes, accompanied by younger ages. Conversely, samples with finer grains are composed of zircons with smaller grain sizes, accompanied by older ages. This implies that hydrodynamic fractionation might have impacted the grain size and age of minerals; however, the effect of provenance changing still cannot be ruled out.
    The novel statistical tools and the Unmixing model applied in this study show promising outcomes and provide robust and reasonable results. Testing these results against those obtained from different methods, along with a comparison to the traditional visulization method and a thorough understanding of the geological background, can undoubtedly assist researchers to make progresses in sediment provenance research in the future.

    誌謝 i 摘要 iii ABSTRACT v 目錄 ix 表目錄 xiii 圖目錄 xv 第1章 緒論 1 1.1 地質背景 3 1.2 顯著造山事件 10 1.3 採樣 12 第2章 取樣與分析方法 25 2.1 樣本處理步驟 25 2.1.1 鋯石分選 25 2.1.2 製靶與拋光 26 2.2 鋯石鈾-鉛定年 27 2.2.1 理論背景 27 2.2.2 LA-ICPMS定年 30 2.3 普通鉛校正 33 2.4 多維尺度化(Multidimensional scaling, MDS)圖 34 2.4.1 年代機率密度估計及頻譜可視化方法 37 2.4.2 相異性檢測法 40 2.4.3 程式操作方法 45 2.4.4 參數設定 48 2.5 離析模型(Unmixing model) 49 2.5.1 蒙地卡羅模型隨機加權 51 2.5.2 逆蒙地卡羅混合模型 53 2.5.3 程式操作方法 57 2.5.4 參數設定 59 第3章 結果 61 3.1 鋯石樣態 62 3.2 釷/鈾比(Th/U) 66 3.3 U-Pb定年 67 3.3.1 LK1 71 3.3.2 LK2 80 3.3.3 LK4 86 3.3.4 LK5 90 3.3.5 LK6 99 3.4 多維尺度化圖 107 3.4.1 本研究馬河三角洲樣本間之多維尺度化圖 107 3.4.2 馬河三角洲與周圍潛在物源間之多維尺度化圖 110 3.4.3 大尺度地體間之多維尺度化圖 112 3.5 離析模型 114 3.5.1 本研究以周邊可能物源執行離析模型 115 3.5.2 本研究排除紅河與藍江影響以周邊可能物源執行離析模型 117 3.5.3 本研究排除紅河與藍江影響以桑怒區及藍江執行離析模型 119 第4章 討論 123 4.1 樣本頻譜特徵對應沉積年代 124 4.2 鄰近可能物源分析 128 4.3 大尺度地體對比 137 4.4 流體動力分化 142 第5章 結論 151 參考文獻 153 附錄一、CL圖 167 附錄二、鋯石粒徑 181 附錄三、定年數據 197 附錄四、標準鋯石與參考鋯石定年數據 253 附錄五、文獻資料庫 299

    Alagna, K. E., Petrelli, M., Perugini, D., and Poli, G., 2008, Micro-Analytical Zircon and Monazite U-Pb Isotope Dating by LAICPQMS: Geostandards and Geoanalytical Research, v. 32, p. 103–120.
    Albarède, F., 2009, Geochemistry: An Introduction, Cambridge University Press.
    Andersen, T., 2002, Correction of common lead in U–Pb analyses that do not report 204Pb: Chemical Geology, v. 192, no. 1–2, p. 59–79.
    -, 2005, Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation: Chemical Geology, v. 216, no. 3–4, p. 249–270.
    -, 2008, ComPbCorr—Software for Common Lead Correction Of U-Th-Pb Analyses That Do Not Report 204Pb, in Sylvester, P., ed., Laser Ablation–ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues: Vancouver, B.C., Canada, Mineralogical Association of Canada p. 312–314.
    Andersen, T., Kristoffersen, M., and Elburg, M. A., 2018, Visualizing, interpreting and comparing detrital zircon age and Hf isotope data in basin analysis - a graphical approach: Basin Research, v. 30, no. 1, p. 132–147.
    Ao, W., Zhao, Y., Zhang, Y., Zhai, M., Zhang, H., Zhang, R., Wang, Q., and Sun, Y., 2019, The Neoproterozoic magmatism in the northern margin of the Yangtze Block: Insights from Neoproterozoic (950–706 Ma) gabbroic-granitoid rocks of the Hannan Complex: Precambrian Research, v. 333, p. 105442–105469.
    Arboit, F., Collins, A. S., Morley, C. K., King, R., and Amrouch, K., 2016, Detrital zircon analysis of the southwest Indochina terrane, central Thailand: Unravelling the Indosinian orogeny: Geological Society of America Bulletin, v. 128, no. 5–6, p. 1024–1043.
    Blatt, H., and Jones, R. L., 1975, Proportions of exposed igneous, metamorphic, and sedimentary rocks: Geological Society of America Bulletin, v. 86, no. 8, p. 1085–1088.
    Botev, Z. I., Grotowski, J. F., and Kroese, D. P., 2010, Kernel density estimation via diffusion: The Annals of Statistics, v. 38, no. 5, p. 2916–2957.
    Briais, A., Patriat, P., and Tapponnier, P., 1993, Updated interpretation of magnetic anomalies and seafloor spreading stages in the south China Sea: Implications for the Tertiary tectonics of Southeast Asia: Journal of Geophysical Research: Solid Earth, v. 98, no. B4, p. 6299–6328.
    Burrett, C., Khin, Z., Meffre, S., Lai, C. K., Khositanont, S., Chaodumrong, P., Udchachon, M., Ekins, S., and Halpin, J., 2014, The configuration of Greater Gondwana—Evidence from LA ICPMS, U–Pb geochronology of detrital zircons from the Palaeozoic and Mesozoic of Southeast Asia and China: Gondwana Research, v. 26, no. 1, p. 31–51.
    Cantine, M. D., Setera, J. B., Vantongeren, J. A., Mwinde, C., and Bergmann, K. D., 2021, Grain size and transport biases in an Ediacaran detrital zircon record: Journal of Sedimentary Research, v. 91, no. 9, p. 913–928.
    Cao, L., Jiang, T., Wang, Z., Zhang, Y., and Sun, H., 2015, Provenance of Upper Miocene sediments in the Yinggehai and Qiongdongnan basins, northwestern South China Sea: Evidence from REE, heavy minerals and zircon U–Pb ages: Marine Geology, v. 361, p. 136–146.
    Carter, A., Roques, D., Bristow, C., and Kinny, P., 2001, Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam: Geology, v. 29, no. 3, p. 211–214.
    Cawood, P. A., Hawkesworth, C. J., and Dhuime, B., 2012, Detrital zircon record and tectonic setting: Geology, v. 40, no. 10, p. 875–878.
    Charvet, J., Shu, L., Shi, Y., Guo, L., and Faure, M., 1996, The building of south China: collision of Yangzi and Cathaysia blocks, problems and tentative answers: Journal of Southeast Asian Earth Sciences, v. 13, no. 3–5, p. 223–235.
    Chen, Y., Yan, M., Fang, X., Song, C., Zhang, W., Zan, J., Zhang, Z., Li, B., Yang, Y., and Zhang, D., 2017, Detrital zircon U–Pb geochronological and sedimentological study of the Simao Basin, Yunnan: Implications for the Early Cenozoic evolution of the Red River: Earth and Planetary Science Letters, v. 476, p. 22–33.
    Chung, S.-L., Lo, C.-H., Lee, T.-Y., Zhang, Y., Xie, Y., Li, X., Wang, K.-L., and Wang, P.-L., 1998, Diachronous uplift of the Tibetan plateau starting 40? Myr ago: Nature, v. 394, p. 769–773.
    Clift, P. D., Carter, A., Wysocka, A., Van Hoang, L., Zheng, H., and Neubeck, N., 2020, A Late Eocene‐Oligocene Through‐Flowing River Between the Upper Yangtze and South China Sea: Geochemistry, Geophysics, Geosystems, v. 21, no. 7.
    Condie, K. C., 2016, The Supercontinent Cycle, in Condie, K. C., ed., Earth as an Evolving Planetary System: Cambridge, Massachusetts, United States, Academic Press, p. 201–235.
    Condie, K. C., and Aster, R. C., 2010, Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth: Precambrian Research, v. 180, no. 3–4, p. 227–236.
    Davis, D. W., Williams, I. S., and Krogh, T. E., 2003, Historical Development of Zircon Geochronology, in Hanchar, J. M., and Hoskin, P. W. O., eds., Zircon, Volume 53: Berlin, De Gruyter, p. 145–182.
    Dickin, A. P., 2018, Radiogenic Isotope Geology, Cambridge University Press.
    Faure, M., Lin, W., Chu, Y., and Lepvrier, C., 2016, Triassic tectonics of the southern margin of the South China Block: Comptes Rendus Geoscience, v. 348, no. 1, p. 5–14.
    Faure, M., Lin, W., Monié, P., and Meffre, S., 2008, Palaeozoic collision between the North and South China blocks, Triassic intracontinental tectonics, and the problem of the ultrahigh-pressure metamorphism: Comptes Rendus Geoscience, v. 340, no. 2–3, p. 139–150.
    Fedo, C. M., Sircombe, K. N., and Rainbird, R. H., 2003, Detrital Zircon Analysis of the Sedimentary Record, in Hanchar, J. M., and Hoskin, P. W. O., eds., Zircon, Volume 53: Berlin, De Gruyter, p. 277–303.
    Feng, Y., Song, C., He, P., Meng, Q., Wang, Q., Wang, X., and Chen, W., 2021, Detrital zircon U‐Pb geochronology of the Jianchuan Basin, southeastern Tibetan Plateau, and its implications for tectonic and paleodrainage evolution: Terra Nova, v. 33, no. 6, p. 560–572.
    Fyhn, M. B. W., Thomsen, T. B., Keulen, N., Knudsen, C., Rizzi, M., Bojesen-Koefoed, J., Olivarius, M., Tri, T. V., Phach, P. V., Minh, N. Q., Abatzis, I., and Nielsen, L. H., 2019, Detrital zircon ages and heavy mineral composition along the Gulf of Tonkin—Implication for sand provenance in the Yinggehai-Song Hong and Qiongdongnan basins: Marine and Petroleum Geology, v. 101, p. 162–179.
    Garzanti, E., Andò, S., and Vezzoli, G., 2008, Settling equivalence of detrital minerals and grain-size dependence of sediment composition: Earth and Planetary Science Letters, v. 273, no. 1–2, p. 138–151.
    Gehrels, G. E., 2000, Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California, in Soreghan, M. J., and Gehrels, G. E., eds., Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California, Volume 347: Boulder, Colorado, Geological Society of America, p. 1–17.
    -, 2012, Detrital Zircon U-Pb Geochronology: Current Methods and New Opportunities, in Busby, C., and Azor, A., eds., Tectonics of Sedimentary Basins: Recent Advances, Wiley-Blackwell, Ltd., A John Wiley & Sons, Inc., p. 47–62.
    -, 2014, Detrital Zircon U-Pb Geochronology Applied to Tectonics: Annual Review of Earth and Planetary Sciences, v. 42, no. 1, p. 127–149.
    Greentree, M. R., Li, Z.-X., Li, X.-H., and Wu, H., 2006, Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia: Precambrian Research, v. 151, no. 1–2, p. 79–100.
    Griffin, W. L., Powell, W. J., Pearson, N. J., and O’Reilly, S. Y., 2008, Glitter: Data Reduction Software for Laser Ablation ICP-MS in Sylvester, P., ed., Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues: Vancouver, B.C., Canada, Mineralogical Association of Canada, p. 308–311.
    Ha, V. V., 2023, personal communication: vuha@igsvn.vast.vn
    Ha, V. V., Lam, D. D., Duong, N. T., Cuc, N. T. T., Quang, N. M., Tha, H. V., Min, N. T., Tuan, D. M., Tung, D. M., and Chi, G. T. K., 2019, Holocene sedimentary facies in coastal plain of the Song Ma Delta, Thanh Hoa Province: Vietnam Journal of Earth Sciences, v. 41, no. 3, p. 229–239.
    Hau, B. V., Kim, Y., Thanh, N. X., Hai, T. T., and Yi, K., 2018, Neoproterozoic deposition and Triassic metamorphism of metasedimentary rocks in the Nam Co Complex, Song Ma Suture Zone, NW Vietnam: Geosciences Journal, v. 22, no. 4, p. 549–568.
    He, M., Zheng, H., and Clift, P. D., 2013, Zircon U–Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China: Chemical Geology, v. 360–361, p. 186–203.
    He, M., Zheng, H., Clift, P. D., Bian, Z., Yang, Q., Zhang, B., and Xia, L., 2021, Paleogene Sedimentary Records of the Paleo‐Jinshajiang (Upper Yangtze) in the Jianchuan Basin, Yunnan, SW China: Geochemistry, Geophysics, Geosystems, v. 22, no. 6.
    He, X., Tan, S., Zhou, J., Liu, Z., Zhao, Z., Yang, S., and Zhang, Y., 2020, Identifying the leucogranites in the Ailaoshan-Red River shear zone: Constraints on the timing of the southeastward expansion of the Tibetan Plateau: Geoscience Frontiers, v. 11, no. 3, p. 765–781.
    He, Z.-Y., and Xu, X.-S., 2012, Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: Response to the geodynamics of paleo-Pacific plate subduction: Chemical Geology, v. 328, p. 208–221.
    Hennig, J., Breitfeld, H. T., Gough, A., Hall, R., Long, T. V., Kim, V. M., and Quang, S. D., 2018, U-PB Zircon Ages and Provenance of Upper Cenozoic Sediments from the Da Lat Zone, SE Vietnam: Implications For an Intra-Miocene Unconformity and Paleo-Drainage of the Proto–Mekong River: Journal of Sedimentary Research, v. 88, no. 4, p. 495–515.
    Hiess, J., Condon, D. J., McLean, N., and Noble, S. R., 2012, 238U/235U Systematics in terrestrial uranium-bearing minerals: Science, v. 335, no. 6076, p. 1610–1614.
    Hieu, P. T., Li, S.-Q., Yu, Y., Thanh, N. X., Dung, L. T., Tu, V. L., Siebel, W., and Chen, F., 2017, Stages of late Paleozoic to early Mesozoic magmatism in the Song Ma belt, NW Vietnam: evidence from zircon U–Pb geochronology and Hf isotope composition: International Journal of Earth Sciences, v. 106, no. 3, p. 855–874.
    Hoang, v. L., Wu, F.-Y., Clift, P. D., Wysocka, A., and Swierczewska, A., 2009, Evaluating the evolution of the Red River system based on in situ U-Pb dating and Hf isotope analysis of zircons: Geochemistry, Geophysics, Geosystems, v. 10, no. 11, p. n/a–n/a.
    Hoskin, P. W. O., and Schaltegger, U., 2003, The Composition of Zircon and Igneous and Metamorphic Petrogenesis, in Hanchar, J. M., and Hoskin, P. W. O., eds., Zircon, Volume 53: Berlin, De Gruyter, p. 27–62.
    Jackson, S. E., Pearson, N. J., Griffin, W. L., and Belousova, E. A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology: Chemical Geology, v. 211, no. 1–2, p. 47–69.
    Janvier, P., Thanh, T.-D., Phuong, T. H., and Truong, D. N., 1997, The Devonian vertebrates (Placodermi, Sarcopterygii) from Central Vietnam and their bearing on the Devonian palaeogeography of Southeast Asia: Journal of Asian Earth Sciences, v. 15, no. 4–5, p. 393–406.
    Ji, L., Liu, F., Wang, F., and Tian, Z., 2019, Depositional Age, Provenance Characteristics and Tectonic Setting of the Ailaoshan Group in the Southwestern South China Block: Acta Geologica Sinica - English Edition, v. 93, no. 6, p. 1687–1710.
    Košler, J., and Sylvester, P. J., 2003, Present Trends and the Future of Zircon in Geochronology: Laser Ablation ICPMS, in Hanchar, J. M., and Hoskin, P. W. O., eds., Zircon, Volume 53: Berlin, De Gruyter, p. 243–276.
    Kröner, A., and Stern, R. J., 2005, AFRICA | Pan-African Orogeny, in Selley, R. C., Cocks, L. R. M., and Plimer, I. R., eds., Encyclopedia of Geology, Volume 1: Amsterdam, Elsevier, p. 1–12.
    Kruskal, J. B., 1964, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis: Psychometrika, v. 29, no. 1, p. 1–27.
    Kruskal, J. B., and Wish, M., 1978, Multidimensional Scaling, Newbury Park, California, Sage Publications, Inc., Sage University Paper series on Quantitative Applications in the Social Sciences, v. 07–011.
    Kusky, T. M., 2011, Geophysical and geological tests of tectonic models of the North China Craton: Gondwana Research, v. 20, no. 1, p. 26–35.
    Kusky, T. M., Windley, B. F., and Zhai, M.-G., 2007, Tectonic evolution of the North China Block: from orogen to craton to orogen, in Zhai, M.-G., Windley, B. F., Kusky, T. M., and Meng, Q. R., eds., Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia, Volume 280: Bath, UK, The Geological Society of London, p. 1–34.
    Lambeck, K., Rouby, H., Purcell, A., Sun, Y., and Sambridge, M., 2014, Sea level and global ice volumes from the Last Glacial Maximum to the Holocene: Proceedings of the National Academy of Sciences of the United States of America, v. 111, no. 43, p. 15296–15303.
    Lawrence, R. L., 2007, Testing for Hydrodynamic Fractionation of Zircon Populations in a Sedimentary Microenvironment [Bachelor of Arts with Honors: Williams College], 84 p.
    Lawrence, R. L., Cox, R., Mapes, R. W., and Coleman, D. S., 2011, Hydrodynamic fractionation of zircon age populations: Geological Society of America Bulletin, v. 123, no. 1–2, p. 295–305.
    Leloup, P. H., Lacassin, R., Tapponnier, P., Schärer, U., Zhong, D., Liu, X., Zhang, L., Ji, S., and Trinh, P. T., 1995, The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina: Tectonophysics, v. 251, p. 3–84.
    Leloup, P. H., Tapponnier, P., Lacassin, R., and Searle, M. P., 2007, Discussion on the role of the Red River shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia Journal, Vol. 163, 2006, 1025–1036: Journal of the Geological Society, v. 164, p. 1253–1260.
    Lepvrier, C., Faure, M., Van, V. N., Vu, T. V., Lin, W., Trong, T. T., and Hoa, P. T., 2011, North-directed Triassic nappes in Northeastern Vietnam (East Bac Bo): Journal of Asian Earth Sciences, v. 41, no. 1, p. 56–68.
    Lepvrier, C., Maluski, H., Nguyen, V. V., Roques, D., Axente, V., and Rangin, C., 1997, Indosinian NW-trending shear zones within the Truong Son belt (Vietnam): 40Ar-39Ar Triassic ages and Cretaceous to Cenozoic overprints: Tectonophysics, v. 283, no. 1–4, p. 105–127.
    Lepvrier, C., Van Vuong, N., Maluski, H., Truong Thi, P., and Van Vu, T., 2008, Indosinian tectonics in Vietnam: Comptes Rendus Geoscience, v. 340, no. 2–3, p. 94–111.
    Li, Q., Lin, W., Wang, Y., Faure, M., Meng, L., Wang, H., Van Nguyen, V., Thu, H. L. T., Lepvrier, C., Chu, Y., Wei, W., and Van Vu, T., 2021, Detrital zircon U–Pb age distributions and Hf isotopic constraints of the Ailaoshan-Song Ma Suture Zone and their paleogeographic implications for the Eastern Paleo-Tethys evolution: Earth-Science Reviews, v. 221.
    Li, X., Li, W., and Li, Z.-X., 2007, On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China: Chinese Science Bulletin, v. 52, no. 14, p. 1873–1885.
    Li, Y., Wang, C., Dai, J., Xu, G., Hou, Y., and Li, X., 2015, Propagation of the deformation and growth of the Tibetan–Himalayan orogen: A review: Earth-Science Reviews, v. 143, p. 36–61.
    Li, Z. X., 1998, Tectonic History of the Major East Asian Lithospheric Blocks Since the Mid-Proterozoic— A Synthesis, in Flower, M. F. J., Chung, S.-L., Lo, C.-H., and Lee, T.-Y., eds., Mantle Dynamics and Plate Interactions in East Asia, Volume 27, American Geophysical Union, p. 221–243.
    Liu, X., Gao, S., Diwu, C., Yuan, H., and Hu, Z., 2007, Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size: Chinese Science Bulletin, v. 52, no. 9, p. 1257–1264.
    Liu, Y., Hu, Z., Zong, K., Gao, C., Gao, S., Xu, J., and Chen, H., 2010, Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS: Chinese Science Bulletin, v. 55, no. 15, p. 1535–1546.
    Ludwig, K. R., 2003, Mathematical-Statistical Treatment of Data and Errors for 230Th/U Geochronology, in Bourdon, B., Henderson, G. M., Lundstrom, C. C., and Turner, S., eds., Uranium-series Geochemistry, Volume 52: Berlin, De Gruyter, p. 631–656.
    -, 2012, User's Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel, Berkeley, California, U.S.A., Berkeley Geochronology Center, Berkeley Geochronology Center Special Publication.
    Malusà, M. G., Carter, A., Limoncelli, M., Villa, I. M., and Garzanti, E., 2013, Bias in detrital zircon geochronology and thermochronometry: Chemical Geology, v. 359, p. 90–107.
    Marchesiello, P., Kestenare, E., Almar, R., Boucharel, J., and Nguyen, N. M., 2020, Longshore drift produced by climate-modulated monsoons and typhoons in the South China Sea: Journal of Marine Systems, v. 211.
    McIntyre, G. A., Brooks, C., Compston, W., and Turek, A., 1966, The Statistical Assessment of Rb-Sr Isochrons: Journal of Geophysical Research, v. 71, no. 22, p. 5459–5468.
    Metcalfe, I., 2011, Tectonic framework and Phanerozoic evolution of Sundaland: Gondwana Research, v. 19, no. 1, p. 3–21.
    Miller, K. G., Mountain, G. S., Wright, J. D., and Browning, J. V., 2011, A 180-Million-Year Record of Sea Level and Ice Volume Variations from Continental Margin and Deep-Sea Isotopic Records: Oceanography, v. 24, no. 2, p. 40–53.
    Möller, A., O'Brien, P. J., Kennedy, A., and Kröner, A., 2002, Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon: Journal of Metamorphic Geology, v. 20, no. 8, p. 727–740.
    Nakano, N., Osanai, Y., Owada, M., Binh, P., Hokada, T., Kaiden, H., and Bui, V. T. S., 2021, Evolution of the Indochina block from its formation to amalgamation with Asia: Constraints from protoliths in the Kontum Massif, Vietnam: Gondwana Research, v. 90, p. 47–62.
    Nguyen, H. H., Carter, A., Hoang, L. V., and Vu, S. T., 2018, Provenance, routing and weathering history of heavy minerals from coastal placer deposits of southern Vietnam: Sedimentary Geology, v. 373, p. 228–238.
    NOAA National Geophysical Data Center, 2009, ETOPO1 1 Arc-Minute Global Relief Model, NOAA National Centers for Environmental Information.
    Pell, S. D., Williams, I. S., and Chivas, A. R., 1997, The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands: Sedimentary Geology, v. 109, no. 3–4, p. 233–260.
    Posamentier, H. W., Jervey, M. T., and Vail, P. R., 1988, Eustatic Controls on Clastic Deposition I—Conceptual Framework, in Wilgus, C. K., Hastings, B. S., Posamentier, H. W., Wagoner, J. V., Ross, C. A., and Kendall, C. G. S. C., eds., Sea-Level Changes: An Integrated Approach, Volume 42, SEPM Society for Sedimentary Geology, p. 109–124.
    Posamentier, H. W., and Vail, P. R., 1988, Eustatic Controls on Clastic Deposition II—Sequence and Systems Tract Models, in Wilgus, C. K., Hastings, B. S., Posamentier, H. W., Wagoner, J. V., Ross, C. A., and Kendall, C. G. S. C., eds., Sea-Level Changes: An Integrated Approach, Volume 42, SEPM Society for Sedimentary Geology, p. 125–154.
    Quang, N. M., Ha, V. V., Min, N. T., Dao, N. T., Cuc, N. T. T., Tuan, D. M., Tung, D. X., Man, T. T., and Thao, N. T., 2023, Holocene sedimentary facies in the incised valley of Ma River Delta, Vietnam: Vietnam Journal of Earth Sciences, v. 45, no. 4, p. 497–516.
    Quang, N. M., Ha, V. V., Tan, M. T., Ban, T. X., Dien, T. N., Tuan, M. D., Tung, D. X., Min, N. T., Tha, H. V., and Chi, G. T. K., 2021, Geomorphological sedimentary characteristics in the coastal area of Ma river delta, Thanh Hoa province: Tạp chí Khoa học và Công nghệ Biển, v. 21, no. 3, p. 283–298.
    Rice, J. A., 1995, Mathematical Statistics and Data Analysis, Belmont, California, Duxbury Press.
    Rossignol, C., Bourquin, S., Hallot, E., Poujol, M., Dabard, M.-P., Martini, R., Villeneuve, M., Cornée, J.-J., Brayard, A., and Roger, F., 2018, The Indosinian orogeny: A perspective from sedimentary archives of north Vietnam: Journal of Asian Earth Sciences, v. 158, p. 352–380.
    Rubatto, D., 2017, Zircon: The Metamorphic Mineral, in Kohn, M. J., Engi, M., and Lanari, P., eds., Petrochronology: Methods and Applications, Volume 83: Berlin, De Gruyter, p. 261–295.
    Rubatto, D., and Gebauer, D., 2000, Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps, in Pagel, M., Barbin, V., Blanc, P., and Ohnenstetter, D., eds., Cathodoluminescence in Geosciences: Heidelberg, Springer Berlin, p. 373–400.
    Rutherford, E., and Soddy, F., 1902, LXXXIV.—The radioactivity of thorium compounds. II. The cause and nature of radioactivity: Journal of the Chemical Society, Transactions, v. 81, no. 0, p. 837–860.
    Saintilan, N., Khan, N. S., Ashe, E., Kelleway, J. J., Rogers, K., Woodroffe, C. D., and Horton, B. P., 2020, Thresholds of mangrove survival under rapid sea level rise: Science, v. 368, no. 6495, p. 1118–1121.
    Sambridge, M. S., and Compston, W., 1994, Mixture modeling of multi-component data sets with application to ion-probe zircon ages: Earth and Planetary Science Letters, v. 128, no. 3–4, p. 373–390.
    Satkoski, A. M., Wilkinson, B. H., Hietpas, J., and Samson, S. D., 2013, Likeness among detrital zircon populations—An approach to the comparison of age frequency data in time and space: Geological Society of America Bulletin, v. 125, no. 11–12, p. 1783–1799.
    Saylor, J. E., Jordan, J. C., Sundell, K. E., Wang, X., Wang, S., and Deng, T., 2018, Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau: Basin Research, v. 30, no. 3, p. 544–563.
    Saylor, J. E., Knowles, J. N., Horton, B. K., Nie, J., and Mora, A., 2013, Mixing of Source Populations Recorded in Detrital Zircon U-Pb Age Spectra of Modern River Sands: The Journal of Geology, v. 121, no. 1, p. 17–33.
    Saylor, J. E., Stockli, D. F., Horton, B. K., Nie, J., and Mora, A., 2012, Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera, Colombia: Geological Society of America Bulletin, v. 124, no. 5–6, p. 762–779.
    Saylor, J. E., and Sundell, K. E., 2016, Quantifying comparison of large detrital geochronology data sets: Geosphere, v. 12, no. 1, p. 203–220.
    Schoenborn, W. A., Fedo, C. M., and Farmer, G. L., 2012, Provenance of the Neoproterozoic Johnnie Formation and Stirling Quartzite, southeastern California, determined by detrital zircon geochronology and Nd isotope geochemistry: Precambrian Research, v. 206–207, p. 182–199.
    Searle, M. P., 2006, Role of the Red River Shear zone, Yunnan and Vietnam, in the continental extrusion of SE Asia: Journal of the Geological Society, v. 163, p. 1025–1036.
    Searle, M. P., Yeh, M.-W., Lin, T.-H., and Chung, S.-L., 2010, Structural constraints on the timing of left-lateral shear along the Red River shear zone in the Ailao Shan and Diancang Shan Ranges, Yunnan, SW China: Geosphere, v. 6, no. 4, p. 316–338.
    Silverman, B. W., 1986, Density Estimation for Statistics and Data Analysis, London, Chapman and Hall/CRC, Monographs on Statistics and Applied Probability.
    Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N., and Whitehouse, M. J., 2008, Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis: Chemical Geology, v. 249, no. 1–2, p. 1–35.
    Sone, M., and Metcalfe, I., 2008, Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny: Comptes Rendus Geoscience, v. 340, no. 2-3, p. 166–179.
    Sundell, K. E., and Saylor, J. E., 2017, Unmixing detrital geochronology age distributions: Geochemistry, Geophysics, Geosystems, v. 18, no. 8, p. 2872–2886.
    Tapponnier, P., Lacassin, R., Leloup, P. H., Schärer, U., Zhong, D., Wu, H., Liu, X., Ji, S., Zhang, L., and Zhong, J., 1990, The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China: Nature, v. 343, p. 431–437.
    Usuki, T., Lan, C.-Y., Wang, K.-L., and Chiu, H.-Y., 2013, Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons: Tectonophysics, v. 586, p. 145–159.
    Vermeesch, P., 2004, How many grains are needed for a provenance study?: Earth and Planetary Science Letters, v. 224, no. 3–4, p. 441–451.
    -, 2007, Quantitative geomorphology of the White Mountains (California) using detrital apatite fission track thermochronology: Journal of Geophysical Research, v. 112, no. F3.
    -, 2012, On the visualisation of detrital age distributions: Chemical Geology, v. 312–313, p. 190–194.
    -, 2013, Multi-sample comparison of detrital age distributions: Chemical Geology, v. 341, p. 140–146.
    -, 2014, Corrigendum to “Multi-sample comparison of detrital age distributions” [Chem. Geol. 341 (11 March 2013) — 140-146]: Chemical Geology, v. 380, p. 191.
    -, 2016, Corrigendum to “Multi-sample comparison of detrital age distributions” [Chem. Geol. 341 (2013) 140–146]: Chemical Geology, v. 425, p. 145.
    -, 2018, IsoplotR: A free and open toolbox for geochronology: Geoscience Frontiers, v. 9, no. 5, p. 1479–1493.
    von Eynatten, H., and Dunkl, I., 2012, Assessing the sediment factory: The role of single grain analysis: Earth-Science Reviews, v. 115, no. 1-2, p. 97–120.
    Wang, C., Liang, X., Foster, D. A., Fu, J., Jiang, Y., Dong, C., Zhou, Y., Wen, S., and Van Quynh, P., 2016, Detrital zircon U–Pb geochronology, Lu–Hf isotopes and REE geochemistry constrains on the provenance and tectonic setting of Indochina Block in the Paleozoic: Tectonophysics, v. 677–678, p. 125–134.
    Wang, C., Liang, X., Foster, D. A., Tong, C., Liu, P., Liang, X., and Zhang, L., 2019, Linking source and sink: Detrital zircon provenance record of drainage systems in Vietnam and the Yinggehai–Song Hong Basin, South China Sea: Geological Society of America Bulletin, v. 131, no. 1/2, p. 191–204.
    Wang, L., Liu, C., Gao, X., and Zhang, H., 2014, Provenance and paleogeography of the Late Cretaceous Mengyejing Formation, Simao Basin, southeastern Tibetan Plateau: Whole-rock geochemistry, U–Pb geochronology, and Hf isotopic constraints: Sedimentary Geology, v. 304, p. 44–58.
    Wang, L., Shen, L., Liu, C., Chen, K., Ding, L., and Wang, C., 2021a, The Late Cretaceous source-to-sink system at the eastern margin of the Tibetan Plateau: Insights from the provenance of the Lanping Basin: Geoscience Frontiers, v. 12, no. 3.
    Wang, L., Shen, L., Liu, C., and Ding, L., 2020, Evolution of the paleo-Mekong River in the Early Cretaceous: Insights from the provenance of sandstones in the Vientiane Basin, central Laos: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 545.
    Wang, P., Chen, X., Zhu, L., Xie, H., Lü, K., and Wei, X., 2022, Principles and Biases of Quantitative Provenance Analysis Using Detrital Zircon U-Pb Geochronology: Insight from modern river sands: Acta Sedimentologica Sinica, v. 40, no. 6, p. 1599–1614.
    Wang, X.-L., Zhou, J.-C., Griffin, W. L., Wang, R.-C., Qiu, J.-S., O’Reilly, S. Y., Xu, X., Liu, X.-M., and Zhang, G.-L., 2007a, Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia Blocks: Precambrian Research, v. 159, no. 1–2, p. 117–131.
    Wang, Y., Fan, W., Zhao, G., Ji, S., and Peng, T., 2007b, Zircon U–Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block: Gondwana Research, v. 12, no. 4, p. 404–416.
    Wang, Y., Lin, W., Faure, M., Lepvrier, C., Chu, Y., Van Nguyen, V., Thu, H. L. T., Wei, W., Liu, F., and Van Vu, T., 2021b, Detrital Zircon U‐Pb Age Distribution and Hf Isotopic Constraints From the Terrigenous Sediments of the Song Chay Suture Zone (NE Vietnam) and Their Paleogeographic Implications on the Eastern Paleo‐Tethys Evolution: Tectonics, v. 40, no. 8.
    Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D., 2019, The Generic Mapping Tools Version 6: Geochemistry, Geophysics, Geosystems, v. 20, no. 11, p. 5556–5564.
    Wetherill, G. W., 1956, Discordant Uranium-Lead Ages I: Transactions, American Geophysical Union, v. 37, no. 3, p. 320–326.
    Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J. C., and Spegel, W., 1995, Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses: Geostandards Newsletter, v. 19, p. 1–23.
    Wiedenbeck, M., Hanchar, J. M., Peck, W. H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.-P., Greenwood, R. C., Hinton, R., Kita, N., Mason, P. R. D., Norman, M., Ogasawara, M., Piccoli, P. M., Rhede, D., Satoh, H., Schulz-Dobrick, B., Skår, Ø., Spicuzza, M. J., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q., and Zheng, Y.-F., 2004, Further characterisation of the 91500 Zircon crystal: Geostandards and Geoanalytical Research, v. 28, p. 9–39.
    Wissink, G. K., Hoke, G. D., Garzione, C. N., and Liu‐Zeng, J., 2016, Temporal and spatial patterns of sediment routing across the southeast margin of the Tibetan Plateau: Insights from detrital zircon: Tectonics, v. 35, no. 11, p. 2538–2563.
    Wu, Y., Fang, X., Liao, S., Xue, L., Chen, Z., Yang, J., Lu, Y., Ling, K., Hu, S., Kong, S., Xiong, Y., Li, H., Shang, X., Ji, R., Lu, X., Song, B., Zhang, L., and Ji, J., 2020, Crustal evolution events in the Chinese continent: evidence from a zircon U-Pb database: International Journal of Digital Earth, v. 13, no. 12, p. 1532–1552.
    Wu, Y., and Zheng, Y., 2004, Genesis of zircon and its constraints on interpretation of U-Pb age: Chinese Science Bulletin, v. 49, p. 1554–1569.
    Xia, X., Nie, X., Lai, C.-K., Wang, Y., Long, X., and Meffre, S., 2016, Where was the Ailaoshan Ocean and when did it open: A perspective based on detrital zircon U–Pb age and Hf isotope evidence: Gondwana Research, v. 36, p. 488–502.
    Xu, J., Xia, X. P., Lai, C., Long, X., and Huang, C., 2019, When Did the Paleotethys Ailaoshan Ocean Close: New Insights From Detrital Zircon U‐Pb age and Hf Isotopes: Tectonics, v. 38, no. 5, p. 1798–1823.
    Yakymchuk, C., Kirkland, C. L., and Clark, C., 2018, Th/U ratios in metamorphic zircon: Journal of Metamorphic Geology, v. 36, no. 6, p. 715–737.
    Yan, Y., Carter, A., Huang, C.-Y., Chan, L.-S., Hu, X.-Q., and Lan, Q., 2012, Constraints on Cenozoic regional drainage evolution of SW China from the provenance of the Jianchuan Basin: Geochemistry, Geophysics, Geosystems, v. 13, no. 3, p. n/a–n/a.
    Yan, Y., Huang, B., Zhao, J., Zhang, D., Liu, X., Charusiri, P., and Veeravinantanakul, A., 2017, Large southward motion and clockwise rotation of Indochina throughout the Mesozoic: Paleomagnetic and detrital zircon U–Pb geochronological constraints: Earth and Planetary Science Letters, v. 459, p. 264–278.
    Yeh, M.-W., Lee, T.-Y., Lo, C.-H., Chung, S.-L., Lan, C.-Y., and Anh, T. T., 2008, Structural evolution of the Day Nui Con Voi metamorphic complex: Implications on the development of the Red River Shear Zone, Northern Vietnam: Journal of Structural Geology, v. 30, no. 12, p. 1540–1553.
    Yeh, M.-W., Wintsch, R. P., Liu, Y.-C., Lo, C.-H., Chung, S.-L., Lin, Y.-L., Lee, T.-Y., Wang, Y. C., and Stokes, M. R., 2014, Evidence for Cool Extrusion of the North Indochina Block along the Ailao Shan Red River Shear Zone, a Diancang Shan Perspective: The Journal of Geology, v. 122, no. 5, p. 567–590.
    Yin, A., and Harrison, T. M., 2000, Geologic Evolution of the Himalayan-Tibetan Orogen: Annual Review of Earth and Planetary Sciences, v. 28, no. 1, p. 211–280.
    Yuan, H.-L., Gao, S., Dai, M.-N., Zong, C.-L., Günther, D., Fontaine, G. H., Liu, X.-M., and Diwu, C., 2008, Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS: Chemical Geology, v. 247, no. 1–2, p. 100–118.
    Zhang, R. Y., Lo, C. H., Li, X. H., Chung, S. L., Anh, T. T., and Tri, T. V., 2014, U-Pb dating and tectonic implication of ophiolite and metabasite from the Song Ma suture zone, northern Vietnam: American Journal of Science, v. 314, no. 2, p. 649–678.
    Zhang, Z., Daly, J. S., Yan, Y., Lei, C., Badenszki, E., Sun, X., and Tian, Y., 2021, No connection between the Yangtze and Red rivers since the late Eocene: Marine and Petroleum Geology, v. 129.
    Zheng, H., Clift, P. D., He, M., Bian, Z., Liu, G., Liu, X., Xia, L., Yang, Q., and Jourdan, F., 2020, Formation of the First Bend in the late Eocene gave birth to the modern Yangtze River, China: Geology, v. 49, no. 1, p. 35–39.
    Zimmermann, S., Mark, C., Chew, D., and Voice, P. J., 2018, Maximising data and precision from detrital zircon U-Pb analysis by LA-ICPMS: The use of core-rim ages and the single-analysis concordia age: Sedimentary Geology, v. 375, p. 5–13.

    無法下載圖示 電子全文延後公開
    2027/07/25
    QR CODE