簡易檢索 / 詳目顯示

研究生: 吳美芬
Mei-Fen Wu
論文名稱: 新型順磁性之含硒混合金屬(錳、鐵)羰基化合物的合成及其相關性
指導教授: 謝明惠
Shieh, Ming-Huey
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 172
中文關鍵詞: 金屬團簇
英文關鍵詞: cluster
論文種類: 學術論文
相關次數: 點閱:144下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    以[PPN][Se2Mn3(CO)9]為起始物與Fe(CO)5依莫耳數1:1.71之比例,於2.5M之KOH溶於等體積的MeOH與CH2Cl2混合溶液中反應,可得缺一電子之三角錐結構產物[PPN]2[SeMnFe2(CO)9](Td)。若鹼性濃度降為0.5M,則產生具八面體結構的[PPN]2[Se2Mn2Fe2(CO)11](Oh)及未知物(A)的混合產物;若將KOH濃度提升為4M,則獲一已知的穩定產物[PPN]2[SeFe3(CO)9]。以相同比例,將起始物的陽離子改為[PPh4]+,並將鹼濃度控制在1M以下反應65小時,即可將Oh產物單離出。於此系統下,將KOH濃度固定於2M,反應 25小時後可得到非常特別的蝴蝶型結構化合物[PPh4]2[SeMn2Fe2(CO)12](Butterfly),是為一罕見的diradical species,且隨時間增加其會有逐漸轉變為Oh及未知物(A)的傾向。除此,為能進一步了解[Se2Mn3(CO)9]-的反應性,亦與其他氧化劑或還原劑反應,結果則多形成穩定的雙錳化合物。
    由於反應性較強的Cr(CO)6在鹼性條件下可引入[Se2Mn3(CO)9]-中,同族的Mo(CO)6卻宣告失敗。故將Mo(CO)6、Mn2(CO)10及SeO2以莫耳比2:1:3之一鍋化方式反應,可成功獲得第一個同時混有m3-O及m3-Se的雙三角錐結構產物[PPN]2[SeOMn3(CO)9], 乍看之下Mo(CO)6並未參與反應,推測其可能是扮演催化角色,而促使O原子產生並橋接於Mn3金屬平面上。
    此外,由於我們研究中所有新化合物其架構電子並不符合電子理論計算,於電子順磁共振光譜(electron paramagnetic resonance;EPR)皆顯現其內含未成對電子,尤其是butterfly結構產物之雙自由基吸收特別明顯,而磁性測量結果則呈反鐵磁現象(antiferromagnetism)。另外,亦進行77Se NMR測定並以電化學探討氧化還原性質。

    Abstract
    The reaction of [PPN][Se2Mn3(CO)9] with Fe(CO)5 in a molar ratio of 1:1.71 in 2.5M KOH in a mixed solutions of MeOH and CH2Cl2 (v:v=1:1) produces an electron-deficient tetrahedral cluster complex [PPN]2[SeMnFe2(CO)9]. If the concentration of KOH is decreased to 0.5M, the new octahedral compound [PPN]2[Se2Mn2Fe2(CO)11] and unknown(A) are formed together. When the 4M KOH is used, the stable known compound [PPN]2[SeFe3(CO)9] is obtained. The octahedral complex can be isolated by the employment of [PPh4]+ as the cations and by the control of KOH concentration (<1M) and the reaction time (65hrs). Under the similar conditions, an interesting butterfly cluster [PPh4]2[SeMn2Fe2(CO)12] is obtained by the use of 2M KOH within 25hrs. As the reaction proceeds longer, the butterfly cluster can transform to the octahedral complex and the unknown complex (A).
    [PPN]2[SeOMn3(CO)9] can be obtained from the mixture of Mo(CO)6, Mn2(CO)10, and SeO2 in a molar ratio of 2:1:3. The novel trigonal bipyramid cluster consists of an equilateral triangle of manganese atoms with the triply bridging oxygen and the selenium atom each positioned above and below the trimanganese plane. It seems that Mo(CO)6 may not participate directly in the reaction but possibly plays the catalytic role by facilitating the oxygen atom to bridge above the Mn3 plane.
    In this study, all the new compounds are not in agreement with the conventional electron couting rules. Their EPR spectra are indicative of the existence of the metal-base radicals.
    The butterfly cluster especially shows the characteristic diradical signals. The SQUID analyses reveal the interesting antiferromagnetic interaction. On the other hand, the 77Se NMR and CV analyses are performed as well to understand their properties.

    目 錄 中文摘要……………… ………………………………………………………….…I 英文摘要……………… ………………………………………………………….III 1. 前言…………………………………………………………………….1 1.1 背景………………….…………………………………………………1 1.1-1 合成…………………………………………………………………….1 1.1-2 電子順磁共振………………………………………………………..14 1.1-3 磁性……………………………………………………………………17 1.2 研究目標………………………………………………………………21 2. 實驗…………………………………………………………………..22 2.1 一般方法………………………..…………………………………..22 2.1-1 實驗過程……………………………………………………………..22 2.1-2 光譜儀器……………………………………………………………..22 2.1-3 實驗溶劑……………………………………………………………..24 2.1-4 使用藥品………………………………………….………………….25 2.1-5 縮寫表………………………………………………………..………26 2.2 合成[Se2Mn3(CO)9]-………………………………………………….27 2.3 [PPN]2[SeMnFe2(CO)9](Td)之合成…………………………….……28 2.4 [PPh4][Se2Mn3(CO)9]與Fe(CO)5的反應…………………………….29 2.4-1 [PPh4]2[Se2Mn2Fe2(CO)11](Oh)之合成……………………………….29 2.4-2 [PPh4]2[SeMn2Fe2(CO)12](Butterfly)之合成…………………….…32 2.5 [PPN]2[Se8Mn2(CO)6C2]與Fe(CO)5的反應……………………………33 2.6 [PPN]2[Se2Mn4(CO)12]與Fe(CO)5的反應…………………….………33 2.7 [Se2Mn3(CO)9]-的相關反應……………………………………………34 2.7-1 [PPN][Se2Mn3(CO)9]於4M KOH下的反應…………………………….34 2.7-2 [PPh4][Se2Mn3(CO)9]與Mn(CO)5Br的反應……………………………34 2.7-3 [PPN][Se2Mn3(CO)9]與PbCl2的反應…………………………………35 2.7-4 [PPN][Se2Mn3(CO)9]與CO的反應…………..………………….……35 2.7-5 [PPh4][Se2Mn3(CO)9]與CuCl2•2H2O的反應………………………….36 2.7-6 [PPN][Se2Mn3(CO)9]與CBr4的反應…………….……………………36 2.7-7 [PPN][Se2Mn3(CO)9]與C3H5Br的反應……………..…………………37 2.7-8 [PPN][Se2Mn3(CO)9]與Hg(OAc)2的反應………………….…………38 2.7-9 [PPh4][Se2Mn3(CO)9]與Mo(CO)6的反應..…….…………………….38 2.8 [PPN]2[SeOMn3(CO)9]之合成.…………….…………………………39 2.9 [PPN]2[Se2FeMn3(CO)12]之合成………………………………………41 2.10 [PPN]2[SeMnFe2(CO)9]的晶體結構解析………………………….42 2.11 [PPh4]2[Se2Mn2Fe2(CO)11]的晶體結構解析.…..…….………….48 2.12 [PPh4]2[SeMn2Fe2(CO)12]的晶體結構解析……………………….53 2.13 [PPN]2[SeOMn3(CO)9]的晶體結構解析…………….…….………57 2.14 [PPN][SeBr2Mn2(CO)6]的晶體結構解析.………..……………..62 2.15 [Mo(OPPh3)3(CO)3]的晶體結構解析………………….………….67 2.16 [PPN]2[Hg{SeOMn3(CO)9}2]的晶體結構解析…….………….….71 2.17 [PPN]2[SeMnFe2(CO)9]的固態及液態(CH2Cl2)電子順磁共振光譜…76 2.18 [PPh4]2[Se2Mn2Fe2(CO)11]的固態及液態(CH2Cl2)電子順磁共振光譜76 2.19 [PPh4]2[SeMn2Fe2(CO)12]的固態及液態(CH2Cl2)電子順磁共振光譜.76 2.20 [PPN]2[SeOMn3(CO)9]的固態及液態(CH2Cl2)電子順磁共振光譜….77 2.21 [PPN][Mn2SeBr2(CO)6]的固態及液態(CH2Cl2)電子順磁共振光譜…77 2.22 [PPN]2[SeMnFe2(CO)9]的磁性分析……..………………………….82 2.23 [PPh4]2[Se2Mn2Fe2(CO)11]的磁性分析…….…………………………83 2.24 [PPh4]2[SeMn2Fe2(CO)12]的磁性分析……..……….……………….84 2.25 [PPN]2[SeOMn3(CO)9]的磁性分析…..…..……….……………….85 2.26 [PPN][SeBr2Mn2(CO)6]的磁性分析……..…….……………………86 2.27 [PPN]2[SeMnFe2(CO)9]/CH2Cl2的電化學分析…………….…………88 2.28 [PPh4]2[Se2Mn2Fe2(CO)11]/CH2Cl2的電化學分析……………….……88 2.29 [PPh4]2[SeMn2Fe2(CO)12]/CH2Cl2的電化學分析………….….………88 2.30 [PPN]2[SeOMn3(CO)9]/CH2Cl2的電化學分析………………………..89 2.31 [PPN][Mn2SeBr2(CO)6]/CH2Cl2的電化學分析………..…….……..89 3. 結果……………………………………………………………………90 3.1 [PPN][Se2Mn3(CO)9]與Fe(CO)5/KOH的反應系統……………………90 3.2 [PPh4][Se2Mn3(CO)9]與Fe(CO)5/KOH的反應系統……………………92 3.3 [PPh4][Se2Mn3(CO)9]與Fe(CO)5/NaOH的反應系統………….………95 3.4 Se/Mn/Fe/CO/NaOH的反應系統………………………………………97 3.5 Se/Mn/Fe/CO/KOH的反應系統……………………………………….98 3.6 [Se2Mn4(CO)12]2-、[Se8Mn2(CO)6C2]2-與Fe(CO)5/KOH的反應…………100 3.7 [Se2Mn3(CO)9]-的相關反應………………………………………….101 3.8 合成[PPN]2[SeOMn3(CO)9]的相關反應…………………………….104 3.9 [Hg{SeOMn3(CO)9}2]2-的合成反應……………………..………….107 3.10 [PPN]2[SeMnFe2(CO)9]˙CH2Cl2的晶體結構……....…………….108 3.11 [PPh4]2[Se2Mn2Fe2(CO)11]的晶體結構…………….……………….110 3.12 [PPh4]2[SeMn2Fe2(CO)12]˙2CH2Cl2的晶體結構……………………112 3.13 [PPN]2[SeOMn3(CO)9]的晶體結構………………………………….114 3.14 [PPN][SeBr2Mn2(CO)6]的晶體結構………………………………..116 3.15 [Mo(OPPh3)3(CO)3]的晶體結構…………………….………………118 3.16 [PPN]2[Hg{SeOMn3(CO)9}2]的晶體結構…………………………….120 4. 討論………………………………………………………………….122 4.1 反應性及物性探討………………………………………………….122 4.1-1 [PPN][Se2Mn3(CO)9]與Fe(CO)5/KOH的反應探討………………….122 4.1-2 [PPh4][Se2Mn3(CO)9]與Fe(CO)5/KOH的反應探討………………….126 4.1-3 [PPh4][Se2Mn3(CO)9]與Fe(CO)5/NaOH的反應探討…………………127 4.1-4 [Se2Mn3(CO)9]-的相關反應探討…………………………………….129 4.1-5 合成[PPN]2[SeOMn3(CO)9]的反應探討…………………………….131 4.2 磁性及電子順磁共振探討………………………………………….136 4.2-1 [PPN]2[SeFe2Mn(CO)9]的磁性和電子順磁共振分析………….……136 4.2-2 [PPh4]2[Se2Mn2Fe2(CO)11]的磁性和電子順磁共振分析……………137 4.2-3 [PPh4]2[SeMn2Fe2(CO)12]的磁性和電子順磁共振分析.……………139 4.2-4 [PPN]2[SeOMn3(CO)9]的磁性和電子順磁共振分析……………….140 4.2-5 [PPN][Mn2SeBr2(CO)6]的磁性和電子順磁共振分析………………142 4.3 電化學探討………….……………………………………………..143 4.3-1 [PPN]2[SeMnFe2(CO)9]與[PPN]2[SeFe3(CO)9]/CH2Cl2電化學比較…143 4.3-2 [PPh4]2[Se2Mn2Fe2(CO)11]與[PPN]2[Se2Mn4(CO)12]/CH2Cl2 電化學之比較………………………………………………………144 4.3-3 [PPh4]2[SeMn2Fe2(CO)12]/CH2Cl2電化學探討…………….……….145 4.3-4 [PPN]2[SeOMn3(CO)9]與[PPN][Se2Mn3(CO)9]/CH2Cl2電化學比較 .146 4.3-5 [PPN][Mn2SeBr2(CO)6]/CH2Cl2的電化學分析………….…………147 4.4 77Se-NMR光譜探討………………………………………………..148 4.5 晶體結構討論………………………………………………………150 4.5-1 具四面體EM3(E=S,Se,Te,C;M=Fe,Mn)形式之結構比較…150 4.5-2 具八面體E2M4(E=S,Se;M=Fe,Mn,Cr)形式之結構比較…..152 4.5-3 具蝴蝶型EM4(E=O,S,Se;M=Mn,Fe)形式之結構比較……..154 4.5-4 具雙三角錐E2M3(E=O,S,Se,Te;M=Mn)形式之結構比較….156 5. 結論………………………………………………………………..158 6. 參考資料……………………………………………………….….160 7. 附圖

    6. 參考文獻
    1. Harakas, G. N.; Whittlesey, B. R. J. Am. Chem. Soc. 1996, 118, 4210.
    2. Lin, Y. C.; Lu, K. L. Chemistry 1991, 49, 303.
    3. Ziegler, T,; Versluis, L. Adv. Chem. Ser. 1992, 75, 230.
    4. Fachinetti, G.; Fochi, G.; Funaioli, T. Inorg. Chem. 1994, 33, 1719.
    5. (a) Topsøe, In Surface Properties and Catalysis by Non-metals; D. Reidel, Dordrecht, 1983; p329.
    (b) Chianelli, R. R. Catal. Rev. -Sci. Eng. 1984, 26, 361.
    (c) Brorson, M.; Rink, B.; Scowen, I. J. Organometallics 1999, 18, 2309.
    (d) Matsubara, K.; Okamura, R.; Tanaka, M.; Suzuki, H. J. Am. Chem. Soc. 1998, 120, 1108.
    (e) Tucker, D. S.; Dietz, S.; Parker, K. G.; Garperos, V.; Gabay, J.; Noll, B.; Rakowski DuBois, M. Organometallics 1995, 14, 4325.
    (f) Houser, E. J.; Krautscheid, H.; Rauchfuss, T. B.; Wilson, S. R. J. Chem. Soc., Chem. Commun. 1994, 1283.
    (g) Riaz, U.; Curnow, O.; Curtis, M. D. J. Am. Chem. Soc. 1991, 113, 1416.
    6. Haak, S.; Neels, A.; Stoeckli-Evans, H.; Suss-Fink, G.; Thomas, C. M. Chem. Commun. 1999, 1959.
    7. Hieber, W.; Gruber, J. Z. Anorg. Allg. Chem. 1958, 296, 91.
    8. (a) Nicholls, J. N. Polyhedron 1984, 3, 1307.
    (b) Whitmire, K. H.; Lagrone, C. B.; Rheingold, A. L. Inorg. Chem. 1986, 25, 2472.
    9. Schmid, G. Angew. Chem. Int. Ed. Engl. 1978, 17, 392.
    10. Johnson, B. F. G.; Layer, T. M.; Lewis, J.; Martin, A.; Raithby, P. R. J. Organomet. Chem. 1992, 429, C41.
    11. Mathur, P.; Hossain, M. M.; Rashud, R. S. J. Organomet. Chem. 1993, 448, 211.
    12. Shieh, M.; Shieh, M. -H.; Tsai, Y. -C.; Ueng, G. -H. Inorg. Chem. 1998, 34, 5088.
    13. Gladysz, J. A.; Wong, V. K.; Jick, B. S. Chem. Commun. 1978, 838.
    14. Roof, L. C.; Pennnington, W. T.; Kolis, J. W. Angew. Chem. Int. Ed. Engl. 1992, 31, 913.
    15. Das, B. K.; Kanatzidis, M. G. Inorg. Chem. 1995, 34, 5721.
    16. Averill, B. A.; Eldredge, P. A.; Bose, K. S.; Barber, D. E.; Bryan, R. F.; Sinn, E.; Rheigold, A. Inorg. Chem. 1991, 30, 2365.
    17. Chen, X. N.; Zhang, J.; Yin, Y. Q.; Huang, X. Y. Organometallics 1999, 18, 3164.
    18. Hsieh, A. T. T.; Knight, J. J. Organomet. Chem. 1971, 26, 125.
    19. Knight, J.; Mays, M. J. J. Chem. Soc., Dalton Trans. 1971, 1022.
    20. Planalp, R. P.; Vahrenkamp, H. Organometallics 1987, 6, 492.
    21. Mathur, P.; Hossain, M. M.; Umbarker, S. B.; Satyanarayana, C. V. V.; Yap, G. P. A.; Liable-Sands, L. M.; Rheingold, A. L. Organometallics 1996, 15, 1898.
    22. Mathur, P.; Sekar, P.; Satyanarayana, C. V. V.; Mahon, M. F. J. Chem. Soc., Dalton Trans.1996, 2173.
    23. Freedman, D.; Emge, T. J.; Brennan, J. G. Inorg. Chem. 1999, 38, 4400.
    24. Jin, G. X.; Cheng, Y.; Lin, Y. Organometallics 1999, 18, 947.
    25. Ma, B. Q.; Zhang, D. S.; Gao, S.; Jin, T. Z.; Yan, C. H. New J. Chem. 2000, 24, 251.
    26. Dullaghan, C. A.; Carpenter, G. B.; Sweigart, D. A.; Choi, D. S.; Lee, S. S.; Chung, Y. K. Organometallics 1997, 16, 5688.
    27. Adams, R. D.; Huang, M.; Huang, W. Organometallics 1997, 16, 4479.
    28. Giordano, R.; Sappa, E.; Tiripicchio, A.; Camellini, M. T.; Mays, M. J.; Brown, M. P. Polyhedron 1989, 8, 1855.
    29. Folga, E.; Ziegler, T. J. Am. Chem. Soc. 1993, 115, 5169.
    30. Bianchi, R.; Gervasio, G.; Marabello, D. Inorg. Chem. 2000, 39, 2360.
    31. Dahl, L. F.; Rundle, R. E. Acta Cryst. 1963, 16, 419.
    32. Abbati, G. L.; Cornia, A.; Fabretti, A. C.; Caneschi, A.; Gatteschi, D. Inorg. Chem. 1998, 37, 3759.
    33. Abbati, G. L.; Cornia, A.; Fabretti, A. C.; Caneschi, A.; Gatteschi, D. Inorg. Chem. 1998, 37, 1430.
    34. Sessoli, R.; Tsai, H. –L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1993, 115, 1804.
    35. Aromi, G.; Claude, J. –P.; Knapp, M. J.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc. 1998, 120, 2977.
    36. (a) Zhong, Z. J.; Seino, H.; Mizobe, Y.; Hidai, M.; Fujishima, A.; Ohkoshi, S. –I.; Hashimoto, K. J. Am. Chem. Soc. 2000, 122, 2952.
    (b) Smith, J. A.; Galán-Mascarós, J. -R.; Clérac, R.; Dunbar, K. R. Chem. Commun. 2000, 1077.
    (c) Zhao, L.; Matthews, C. J.; Thompson, L. K.; Heath, S. L. Chem. Commun. 2000, 265.
    37. Ruettinger, W.; Yagi, M.; Wolf, K.; Bernasek, S.; Dismukes, G. C. J. Am. Chem. Soc. 2000, 122, 10353.
    38. Küllmer, V.; Röttinger, E.;Vahrenkamp, H. J. Chem. Soc., Chem. Commun. 1977, 782.
    39. Fang, Z. -G.; Andy Hor, T. S.; Mok, K. F.; Ng, S. –C. Organometallics 1993, 12, 1009.
    40. Reyes-Lezama, M.; Toscano, R. A.; Zúñiga-Villarreal, N. J. Organomet. Chem. 1996, 517, 19.
    41. Huang, S. D.; Lai, C. P.; Barnes, C. L. Angew. Chem. Int. Ed. Engl. 1997, 36, 1854.
    42. Seyferth, D.; Henderson, R. S.; Fackler, J. P.; JR.; Mazany, A. M. J. Organomet. Chem. 1981, 213, C21.
    43. Winter, A.; Zsolnai, L.; Huttner, G. J. Organomet. Chem. 1984, 269, C29.
    44. Schauer, C. K.; Harris, S.; Sabat, M.; Voss, E. J.; Shriver, D. F. Inorg. Chem. 1995, 34, 5017.
    45. Küllmer, V.; Vahrenkamp, H. Chem. Ber. 1977, 110, 228.
    46. O’Neal, S. C.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1990, 29, 3134.
    47. Seidel, R.; Schnautz, B.; Henkel, G. Angew. Chem. Int. Ed. Engl. 1996, 35, 1710.
    48. Herberhold, M.; Reiner, D.; Neugebauer, D. Angew. Chem. Int. Ed. Engl. 1983, 22, 59.
    49. Steigerwald, M. L.; Rice, C. E. J. Am. Chem. Soc. 1988, 110, 4228.
    50. Herrmann, W. A.; Hecht, C. J. Organomet. Chem. 1984, 273, 323.
    51. Shieh, M.; Chen, H. -S.; Yang, H. -Y.; Ueng, C. -H. Angew. Chem. Int. Ed. Engl. 1999, 38, 1252.
    52. (a) Huang, K. -H.; Tsai, Y. -C.; Lee, G. -H.; Peng, S. –M. Shieh, M. Inorg. Chem. 1997, 36, 4421.
    (b) 黃國智,國立台灣師範大學博士論文,1998.
    53. Shieh, M.; Tang, T. –F.; Peng, S. –M.; Lee, G. –H. Inorg. Chem. 1995, 34, 2797.
    54. Uchtman, V. A.; Dahl, L. F. J. Am. Chem. Soc. 1969, 91, 3763.
    55. Bertolucci, A.; Freni, M.; Romiti, P.; Ciani, G.; Sironi, A.; Albano, V. G. J. Organomet. Chem. 1976, 113, C61.
    56. Bino, A.; Cotton, F. A.; Dori, Z.; Kolthammer, B. W. S. J. Am. Chem. Soc. 1981, 103, 5779.
    57. Chisholm, M. H.; Folting, K.; Huffman, J. C.; Kirkpatrick, C. C. J. Am. Chem. Soc. 1981, 103, 5967.
    58. Gibson, C. P.; Rae, A. D.; Tomchick, D. R.; Dahl, L. F. J. Organomet. Chem. 1988, 340, C23.
    59. Ceriotti, A.; Resconi, L.; Demartin, F.; Longoni, G.; Manassero, M.; Sansoni, M. J. Organomet. Chem. 1983, 249, C35.
    60. Goudsmit, R. J.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Whitmire, K. H. J. Chem. Soc., Chem. Commun. 1983, 246.
    61. Colombié, A.; Bonnet, J. -J.; Fompeyrine, P.; Lavigne, G.; Sunshine, S. Organometallics 1986, 5, 1154.
    62. Gibson, C. P.; Huang, J. -S.; Dahl, L. F. Organometallics 1986, 5, 1676.
    63. Schauer, C. K.; Shriver, D. F. Angew. Chem. Int. Ed. Engl. 1987, 26, 255.
    64. Schauer, C. K.; Voss, E. J.; Sabat, M.; Shriver, D. F. J. Am. Chem. Soc. 1989, 111, 7662.
    65. Song, L. –C.; Fan, H. -T.; Hu, Q. –M.; Qin, X. –D.; Zhu, W. –F.; Chen, Y.; Sun, J. Organometallics 1998, 17, 3454.
    66. Mauthur, P.; Ahmed, M. O.; Dash, A. K.; Kaldis, J. H. Organometallics 2000, 19, 941.
    67. Holliday, R. L.; Roof, L. C.; Hargus, B.; Smith, D. U.; Wood, P. T.; Pennington, W. T.; Kolis, J. W. Inorg. Chem. 1995, 34, 4392.
    68. Pake, G. E.; Estk, T. L. The Physical Principles of Electron Paramagnetic Resonance; W. A. Benjamin: Massachusetts, 1973.
    69. (a) 陳秋炳, 楊宗信, 科儀新知, 1983, 4, 78.
    (b) 余健治, 科儀新知, 1993, 14, 37.
    70. Drago, R. S. Physical Methods for Chemists; Saunders Harcourt Brace Jovanovich: Orlando, 1992.
    71. Schake, A. R.; Schmitt, E. A.; Conti, A. J.; Streib, W. E.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. Inorg. Chem. 1991, 30, 3192.
    72. Pecoraro, V. L.; Gelasco, A.; Kirk, M. L.; Kampf, J. W. Inorg. Chem. 1997, 36, 1829.
    73. Nishida, Y.; Sasaki, Y.; Akamatsu, T.; Tsuchiya, K.; Ohba, S.; Sakamoto, M. Polyhedron 1998, 17, 235.
    74. McCusker, J. K.; Jang, H. G.; Wang, S.; Christou, G.; Hendrickson, D. N. Inorg. Chem. 1992, 31, 1874.
    75. (a)Earnshaw, A. Introduction to Magnetochemistry; Academic Press: London, 1968.
    (b)Van Vlenck, J. H. The Theory of Electronic and Magnetic Susceptibilities; Oxford University: London, 1932.
    76. Kahn, O. J. of Magnetism and Magnetic Materials 1986, 54-57, 1459.
    77. Boudreaux, E. A.; Mulay, L. N. Theory and Application of Molecular Paramagnetism; Wiley: New York, 1976.
    78. Agron, P. A.; Ellison, R. D.; Levy, H. A. Acta Cryst. 1967, 23, 1079.
    79. 蔡易州,國立台灣師範大學碩士論文,1994.
    80. (a) Johnson, B. F. G.; Johnston, R. D.; Lewis, J.; Robinson, B. H. J. Chem. Soc., Chem. Commun. 1996, 851.
    (b) Johnson, B. F. G.; Johnston, R. D.; Lewis, J.; Robinson, B. H. J. Organomet. Chem. 1967, 10, 105.
    81. Hersh, W. H.; Fong, R. H. J. Am. Chem. Soc. 1987, 109, 2843.
    82. (a) Treichel, P. M.; Tegen, M. H. J. Organomet. Chem. 1985, 292, 385.
    (b) Liaw, W. –F.; Ou, D. –S.; Li, Y. –S.; Lee, W. –Z.; Chuang, C. –Y.; Lee, Y. –P.; Lee, G. –H.; Peng, S. –M. Inorg. Chem. 1995, 34, 3747.
    (c) Liaw, W. –F.; Chung, C. –Y.; Lee, W. –Z.; Lee, C. –K.; Lee, G. –H.; Peng, S. –M. Inorg. Chem. 1996, 35, 2530.
    (d) Liaw, W. –F.; Lee, W. –Z.; Wang, C. –Y.; Lee, G. –H.; Peng, S. –M. Inorg. Chem. 1997, 36, 1253.
    (e) McDonald, J. W. Inorg. Chem. 1985, 24, 1734.
    (f) Wieghardt, K.; Bossek, U.; Nuber, B.; Weiss, J.; Bonvoisin, J.; Corbellia, M.; Vitols, S. E.; Girerd, J. –J. J. Am. Chem. Soc. 1988, 110, 7398.
    83. Ye, B. –H.; Mak, T.; Williams, I. D.; Li, X. –Y. J. Chem. Soc., Chem. Commun. 1997, 1813.
    84. Limburg, J.; Vrettos, J. S.; Chen, H.; de Paula, J. C.; Crabtree, R. H.; Brudvig, G. W. J. Am. Chem. Soc. 2001, 123, 423.
    85. (a) Puddephatt, R. J.; Xiao, J.; Vittal, J. J. J. Am. Chem. Soc. 1993, 115, 7882.
    (b) Puddephatt, R. J.; Xiao, J. J. Am. Chem. Soc. 1994, 116, 1129.
    (c) Muir, K. H.; Xiao, J.; Hao, L.; Puddephatt, R. J.; Manojlonic-Muir, L. J. Am. Chem. Soc. 1995, 117, 6316.
    (d) Puddephatt, R. J.; Hao, L.; Vittal, J. J.; Xiao, J. Angew. Chem. Int. Ed. Engl. 1995, 34, 346.
    86. Darensbourg, D. J.; Rokicki, A. Organometallics 1982, 1, 1685.
    87. Finney, N. S.; Mitchell, J. M. J. Am. Chem. Soc. 2001, 123, 862.
    88. Ermer, S.; King, K.; Hardcastle, K. I.; Rosenberg, E.; Lanfredi, A. M. M.; Tiripicchio, A.; Camellini, M. T. Inorg. Chem. 1983, 22, 1339.
    89. GÓmez-Sal, M. P.; Johnson, B. F. G.; Lewis, J.; Raithby, P. R.; Syed-Mustaffa, S. A. B. J. Organomet. Chem. 1984, 272, C21.
    90. (a) Farrugia, L. J. J. Chem. Soc., Chem. Commun. 1987, 147.
    (b) Braunstein, P.; Rosé, J.; Tiripicchio, A.; Camellini, M. T. Angew. Chem. Int. Ed. Engl. 1985, 24, 767.
    91. Rosenberg, E.; Hardcastle, K. I.; Day, M. W.; Gobetto, R.; Hajela, S.; Muftikian, R. Organometallics 1991, 10, 203.
    92. Johnson, B. F. G.; Kwik, W. –L.; Lewis, J.; Raithby, P. R.; Saharan, V. P. J. Chem. Soc., Dalton Trans. 1991, 1037.
    93. Farrugia, L. J.; Bianchini, A. Organometallics 1992, 11, 540.
    94. (a) 游宗憲,未發表結果
    (b) 楊惠雅,國立台灣師範大學碩士論文,2000.
    95. Gade, L. H. Angew. Chem. Int. Ed. Engl. 1993, 32, 24.
    96. (a) Dyrek, K.; Che, M. Chem. Rev. 1997, 97, 305.
    (b) Bonneviot, L.; Olivier, D.; Che, M. J. Mol. Catal. 1983, 21, 415.
    97. (a) Beckett, R.; Hoskins, B. F.; J. Chem. Soc., Dalton Trans. 1972, 291.
    (b) Colton, R.; Martin, R. L. Nature 1965, 205, 239.
    98. Whitmire, K. H.; van Hal, J. W. Organometallics 1998, 17, 5197.
    99. Whitmire, K. H.; Bachman, R. E. Inorg. Chem. 1994, 33, 2527.
    100. Bachman, R. E.; Whitmire, K. H.; van Hal, J. Organometallics 1995, 14, 1792.
    101. Strouse, C. E.; Dahl, L. F. J. Am. Chem. Soc. 1971, 93, 6032.
    102. Hansen, P. J.; Jacobson, R. A. J. Organomet. Chem. 1966, 6, 389.
    103. Hoffmann, R.; Saillard, J. –Y.; Halet, J. –F. Inorg. Chem. 1985, 24, 1695.
    104. Shriver, D. F.; Harris, S.; Hriljac, J. A. Inorg. Chem. 1988, 27, 816.
    105. Harris, S.; Gladfelter, W. L.; Blohm, M. L. Inorg. Chem. 1989, 28, 2290.
    106. Shriver, D. F.; Hriljac, J. A.; Swepston, P. N. Organometallics 1985, 4, 158.
    107. Shultz, D. A.; Bodnar, S. H. Inorg. Chem. 1999, 38, 591.

    無法下載圖示
    QR CODE