簡易檢索 / 詳目顯示

研究生: 蔡承哲
Cheng-Che Tsai
論文名稱: 擴增實境與鷹架教學策略 對高中數學空間單元學習成效與動機之影響
The Effects of Augmented Reality and Scaffolding Strategies on Senior High School Students’ Performance and Motivation of Learning Spatial Lessons
指導教授: 陳明溥
Chen, Ming-Puu
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 97
中文關鍵詞: 空間能力鷹架教學策略擴增實境體驗式學習學習成效學習動機
英文關鍵詞: Spatial ability, Scaffolding strategies, Augmented Reality, experiential learning cycle, learning performance, learning motivation
論文種類: 學術論文
相關次數: 點閱:129下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討讓高中一年級學習者在教學者不同的教學策略(程序鷹架教學策略、後設認知鷹架教學策略)之下,經由不同學習環境(擴增實境學習環境、講授式學習環境)進行立體空間座標系與空間向量的數學題目演練,對學生在高中數學課綱中,學習空間知識與觀念之單元的學習成效與學習動機之影響。研究對象為普通高中一年級學習者,常態編班之中隨機抽取四個班級共181人參與實驗教學,學習內容參考教育部公佈之高中數學課綱中之「空間座標系」與「空間向量」單元。本實驗採用因子設計之準實驗研究法,自變項包含學習環境以及鷹架教學策略。學習環境依照教學過程所在的環境分為「擴增實境」與「講授式教學」兩種環境;鷹架教學策略則分為「程序鷹架教學策略」以及「後設認知鷹架教學策略」。依變項包含單元學習成效以及學習動機。研究結果顯示: (1)學習者在擴增實境學習環境中比起講述式學習環境組有更好的空間座標系與向量學習成效表現; (2)學習者在擴增實境學習環境中比起講述式學習環境組有更好的學習動機; (3)擴增實境學習環境下,使用後設認知鷹架教學策略的學習者會有較高的外部目標導向; (4)講述式學習環境下,使用程序鷹架教學策略的學習者會有較高的外部目標導向。

    The purpose of this study was to investigate the effects of Augmented Reality (AR) technology and different scaffolding strategies on senior high school students’ performance in learning spatial lessons. There were four classes, including 181 tenth graders participating in the learning activity, and the methodology of this study is designed according to the experiential learning cycle. The independent variables of this research are learning environment and scaffolding strategy, the learning environments include the Augmented Reality learning and the traditional lecturing learning; and the scaffolding strategies are the procedural scaffolding and the metacognitive scaffolding. The dependent variables are learning performance and learning motivation toward mathematics.
    The results revealed that (a) the Augmented Reality learning environment facilitated learner’s performance better than the traditional lecturing learning environment; (b) Learners in the Augmented Reality learning environment showed more positive learning motivation than those in the traditional lecturing learning environment; (c) In the Augmented Reality learning environment, the metacognitive scaffolding group revealed more positive effect on learner’s extrinsic goal orientation than the procedural scaffolding group; and (d) In the traditional lecturing learning environment, the procedural scaffolding group showed more positive effect on learner’s extrinsic goal orientation than the metacognitive scaffolding group.

    中文摘要 i Abstracts ii 誌謝 iv 表次 vii 圖次 viii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 3 第三節 研究範圍與限制 4 第四節 重要名詞釋義 6 第二章 文獻探討 8 第一節 空間能力教育 8 第二節 擴增實境 13 第三節 鷹架教學理論 18 第三章 研究方法 24 第一節 研究對象 24 第二節 研究設計 26 第三節 實驗流程 48 第四節 研究工具 50 第五節 資料處理與分析 52 第四章 資料分析與討論 58 第一節 空間座標系與空間向量學習成效分析 58 第二節 數學學習動機分析 64 第五章 結論與建議 75 第一節 結論 75 第二節 建議 78 參考文獻 81 中文部分 81 英文部分 82 附錄一 空間座標系與空間向量學習單 89 附錄二 空間座標系與空間向量單元學習成效測驗卷 94 附錄三 數學學習動機問卷 96  

    Schwarzenberger (1984)。錯誤的重要性。數學圈,21,73-80。
    Hart, K. M. (1989). 學生的數學架構。Hart專題演講,呂玉琴整理。科學教育月刊, 124, 18-31。
    丁振豐(1994)。三個心理學派典對空間能力研究的比較。台南師院初等教育學報,7,213-249。
    于富雲、陳玉欣 (2008)。概念構圖對不同空間能力之國小學童自然科學習成效的影響。教育心理學報,39, 83-104。
    王燕超 (2006)。從擴增實境觀點論數位學習之創新。空中教學論叢,20,40-63。
    李洪玉 林崇德(2005)。中學生空间認知能力結構的研究。心理科學,2,269-272
    李盛祖 (1997)。數學診斷測驗編製之探討。測驗與輔導,143 期。
    吳煥昌(2001)。高工機械製圖科學生空間能力與展開圖學習成就之相關研究。國立臺灣師範大學工業教育研究所碩士論文。
    林碧珍 (1985) 。數學概念的形成與學習。國教世紀,21 卷 2 期。
    林福來 (1993)。分數啟蒙課程的分析、批判與辯證。科學教育學刊,1 (1), 1-23。
    教育部(2011)。學業性向測驗簡介。台北:教育部。 (Retrieve June 18, 2013, from web site: http://www.ceec.edu.tw/book/test/tend.htm)
    康鳳梅、簡慶郎、鍾怡慧(2006)。高工學生空間能力常模及空間能力資源網建構之研究。師大學報科學教育類,51 (2)。1-14。
    莊順凱(2005)。以概念圖法建構擴增實境教育系統。國立成功大學工業設計學系碩士論文。取自臺灣博碩士論文系統。
    張世明、袁媛(2006)。萬用揭示板的開發與教學應用之研究。國立交通大學理學院網路學習學程碩士論文。
    廖詠年(2010)。擴增實境在科學教育領域中學習與應用之評析。CNTE2010 電腦與網路科技在教育上的應用研討會。
    蔡承哲 (1996) 。高雄地區高二學生空間向量之解題歷程分析研究。 國立高雄師範大學數學教育研究所碩士論文。
    簡茂發、林一真、陳清平、區雅倫、劉澄桂、舒琮慧 (2007)。大學入學考試中心興趣量表。臺北市:大學入學考試中心。
    簡茂發、何榮桂、鄭海蓮、區雅倫、卓沛勳、蕭孟莛等 (2008)。學業性向測驗之圖形分量表編製研究。考試學刊,4,1-26。
    戴文雄(1998)。不同正增強回饋形式電腦輔助學習系統對不同認知型態與空間能力高工學生機械製圖學習成效之研究。(國科會補助研究,NSC86-2516-S-018-010-TG)。
    Andujar, J. M., Mejias, A., & Marquez, M. A. (2011). Augmented reality for the improvement of remote laboratories: an augmented remote laboratory.Education, IEEE Transactions on, 54 (3), 492-500.
    Ashlock, R. B. (1990). Error Patteren in computation: A semi- programmed approach, 4TH ed. Column, OH: Charles E. Merrill.
    Azevedo, R. Guthrie, J. T., & Seibert, D. (2004). The role of self-regulated learning in fostering student’s conceptual understanding of complex systems with hypermedia. Journal of Educational Computing Research, 30 (1), 87-111.
    Azevedo, R., Verona, M. E., & Cromley, J. G. (2001). Fostering students collaborative problem solving with RiverWeb. In J. D. Moore, C. L. Redfield, & W. L. Johnson (Eds.), Artificial intelligence in education: Al-ED in the wired and wireless future (pp. 167-175). Amsterdam: IOS Press.
    Azuma, R. T. (1997). A survey of augmented reality. Teleoperators and Virtual Environments, 6 (4), 355-385.
    Billinghurst, M. (2002). Augmented reality in education. New Horizons for Learning, 12.
    Billinghurst, M. (2008). Usability testing of augmented / mixed reality systems. Proceeding of ACM SIGGRAPH ASIA 2008 courses, 1-13. doi>10.1145/1508044.1508050
    Binks, T. (2003). The impact and potential future impact of augmented reality on education.
    Brown, J. S., & Burton, R. R. (1978). Diagnostic models for procedural bugs in basic mathematical skills. Cognitive science, 2 (2), 155-192.
    Carillo, L., Lee, C., & Rickey, D. (2005). Enhancing science teaching by doing more: A framework to guide chemistry students' thinking in the laboratory. Science Teacher, 72 (7), 60-65.
    Cheng, K. H., & Tsai, C. C. (2012). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 18(1), 7-22.
    Crosier, J.K., Cobb, S.V.G., Wilson, J.R. (2000). Experimental comparison of virtual reality with traditional teaching methods for teaching radioactivity. Education and Information Technologies, 5, 329–343.
    Cooper, L. A. (1988). The Role of Spatial Representation in Complex Problem Solving. In S. Schiffer & S. Steel (Eds.), Cognition and Representation, Boulder, Co: Westview Press.
    Dolittle, P. E. (1988). Vygotsky’s zone of proximal development as a theory foundation for cooperative learning. Virginia Polytechnic Institute and State University.
    Donderi, D. C. (2006). Visual complexity: A review. Psychological Bulletin, 132, 73-97.
    Dunleavy, M., Dede, C., & Mitchell, R. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology, 18 (1), 7-22.
    Fund, Z. (2007). The effect of scaffolded computerized science problem-solving on achievement outcomes. A comparative study of support programs. Journal of Computer Assisted Learning, 23 (5), 410-424.
    Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.
    Gerjets, P., & Scheiter, K. (2003). Goal configurations and processing strategies as moderators between instructional design and cognitive load: Evidence from hypertext-based instruction. Educational Psychologist, 38, 33–41.
    Greenfield, P. M. (1984). A theory of the teacher in the development of everyday life. In B. Rogoff & J. Lave (Eds), Everyday cognition: Its development in social context (pp. 95-116). Cambridge, MA: Harvard University Press.
    Guilford, J. (1967). The nature of human intelligence. NewYork: McGraw-Hill.
    Hacket, G. & Betz, N. E. (1989). An exploration of the mathematics self-efficacy/mathematics performance correspondence. Journal for Research in Mathematics Education, 20(3), 261-273.
    Hannafin, M. J., Hill, J. R., & Land, S. (1997). Student-centered learning and interactive multimedia: Status, issues, and implications. Contemporary Education, 68 (2), 94-99.
    Hill, J. & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology Research and Development, 49 (3), 37-52.
    Hoffman, B. & Spatariu, A. (2008). The influence of self-efficacy and metacognitve prompting on math problem-solving efficiency. Contemporary Educational Psychology, 33 (4), 875-893.
    Kaufmann, H., & Schmalstieg, D. (2003). Mathematics and geometry education with collaborative augmented reality. Computers & Graphics, 27 (3), 39–345.
    Keehner, M., Montello, D. R., Hegarty, M., & Cohen, C. (2004). Effects of interactivity and spatial ability on the comprehension of spatial relations in a 3D computer visualization. In K. Forbus, D. Gentner, & T. Regier (Eds.), Proceedings of the 26th annual conference of the cognitive science society (pp. 1576). Mahwah, NJ: Erlbaum.
    Krajcik, J. S., Czeniak, C., & Berger, C. (1999). Teaching children science: a project-based approach. Boston: McGraw-Hill College.
    Korakakis, G., Pavlatou, E. A., Palyvos, J. A., & Spyrellis, N. (2009). 3D visualization types in multimedia applications for science learning: A case study for 8th grade students in Greece. Computers & Education, 52 (2), 390-401.
    Lee, A. L., Wong, K. W., & Fung, C. C. (2010). Learning with virtual reality: Its effects on students with different learning styles. Transactions on Edutainment IV (vol. 6250, pp. 79-90). Berlin Heidelberg: Springer.
    Linn, M. C, & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child development, 56, 1479-1498.
    Lohman, D. F. (1979). Spatial abilitiy: Individual differences in speed and level (Tech. Rep. No.9). Stanford, CA: Stanford University, Aptitude Research Project, School Of Education (NTIS No. AD-A075973).
    Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. Advances in the psychology of human intelligence, 4, 181-248.
    Lord, T. R. (1987). A look at spatial abilities in undergraduate women science majors. Journal of Research in Science Teaching, 24 (8), 757-767.
    Martín-Gutiérrez, J., Luís Saorín, J., Contero, M., Alcañiz, M., Pérez-López, D. C., & Ortega, M. (2010). Design and validation of an augmented book for spatial abilities development in engineering students. Computers & Graphics, 34 (1), 77-91.
    McGee, M. G. (1979). Human spatial abilities: psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological bulletin, 86 (5), 889.
    Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: A class of displays on the reality-virtuality continuum. In Photonics for Industrial Applications (pp. 282-292). International Society for Optics and Photonics.
    O’Shea, P. M., Dede, C., & Cherian, M. (2011). Research Note: The Results of Formatively Evaluating an Augmented Reality Curriculum Based on Modified Design Principles. International Journal of Gaming and Computer-Mediated Simulations (IJGCMS), 3 (2), 57-66.
    Pahl, C. (2002). An evaluation of scaffolding for virtual interactive tutorials. International Conference on E-Learning in Business, Government and Higher Education, November 2002, Montreal, Canada.
    Panagos, R. J., DuBois, D. L. (1999). Career self-efficacy development and students with learning disabilities. Learning Disabilities Research and Practice, 14 (1), 25-34.
    Piaget, J. (1967). The child’s conception of space. New York: Norton.
    Rosenshine, B. & Meister, C. (1992). The use if scaffolds for teaching higher level cognitive strategies. Education Leadership, 49 (7), 26-33.
    Shelton, B. E., & Hedley, N. R. (2002). Using augmented reality for teaching Earth-Sun relationships to undergraduate geography students. In First IEEE International Augmented Reality Toolkit Workshop, Darmstadt, Germany.
    Shelton B, Stevens R (2004). Using coordination classes to interpret conceptual change in astronomical thinking. In: Kafai Y, Sandoval W, Enyedy N, Nixon A, Herrera F (eds.). Proceedings of the 6th international conference for the learning sciences. Lawrence Erlbaum & Associates, Mahweh, NJ
    Shepard, R., & Metzler, J. (1971). Mental Rotation of Three-Dimensional Objects. Science, 171 (3972), 701-703.
    Stavy, R. (2000). Congnitive Conflict as a Basic for Teaching Quantitative Aspects of the Concept of Temeperature. 高師大科教中心承辦「八十九年度科學概念學術研討會」論文。高雄。
    Smith, I. M. (1964). Spatial ability. San Diego: Knapp.
    Squire, K. D., & Jan, M. (2007). Mad City Mystery: Developing scientific argumentation skills with a place-based augmented reality game on handheld computers. Journal of Science Education and Technology, 16 (1), 5-29.
    Von Glasersfeld, E. (1987). Learning as a constructive activity. In C. Janvier (Ed.). Problems of representation in the teaching and learning of mathematics (pp.3-17). Hillsadle, NJ: Lawrence Erlbaum Associates.
    Vygotsky, L. S. (1978). Mind and society: The development of higher psychological process. Cambridge, MA: Harvard University Press.
    Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17 (2), 89-100.
    Wolf, S., Brush, T., & Saye, J. (2003). The Big Six Information Skills as a Metacognitive Scaffold: A Case Study. School Library Media Research, 6.
    Zembal-Saul, C., Munford, D., Crawford, B., Friendrichsen, P., & Land, S. (2002). Scaffolding preservice science teachers’ evidence-based arguments during an investigation of natural selection. Research in Science Education, 32 (4), 437-463.

    下載圖示
    QR CODE