簡易檢索 / 詳目顯示

研究生: 陳俊愷
Chen, Chun-Kai
論文名稱: 影像特徵點萃取與匹配應用於福衛二號影像幾何糾正
Apply Feature Matching on FORMOSAT-2 Image Georectification
指導教授: 張國楨
Chang, Kuo-Chen
學位類別: 博士
Doctor
系所名稱: 地理學系
Department of Geography
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 116
中文關鍵詞: 影像匹配福衛二號幾何糾正影像特徵尺度不變特徵轉換
英文關鍵詞: image matching, FORMOSAT-2, rectification, image feature, SIFT
論文種類: 學術論文
相關次數: 點閱:170下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著數位影像獲取及電腦科技的快速發展,遙測科技應用逐漸將領域由國防軍事用途拓展到其他應用範圍,大幅的增加其應用性與時效性。影像幾何糾正為一不可或缺,且日益重要的基礎處理,關係著後續影像融合、變遷偵測或影像鑲嵌等應用。本文探討如何改進特徵匹配演算法來提升遙測影像幾何糾正的效能。尺度不變特徵轉換(Scale Invariant Feature Transform, SIFT)為一種針對高解析數位影像發展出來的影像特徵點萃取方法,其優點是所萃取的特徵不易受到影像旋轉、縮放和灰度值差異而有所變化、皆具有良好特徵點選取與匹配,其結果更可靠和消除影像處理中不確定性。但原始演算法並非針對遙測影像特性所發展,直接應用不易得到良好匹配結果。本研究針對遙測影像的特性,提出改善之方法並修改演算法、建立半自動化處理流程。以FORMOSAT-2 影像為範例,探討SIFT於遙測衛星影像適用性。研究成果可利用修改SIFT演算法於研究中針對多時期、不同區域、不同載具衛星影像進行影像匹配,得到足夠影像控制點,以其進行影像對位與影像幾何糾正,整體精度RMSE優於0.5 pixel。經半自動化處理流程,可將原本耗時、經驗人力導向幾何糾正工作大幅縮短所需時間。

    With the digital image acquisition and the rapid development of computer technology, application of remote sensing technology by the defense and military fields gradually extended to other application purposes, a substantial increase in its applicability and timeliness. Image geometric correction for the integral and increasingly important foundation treatment. It related with the subsequent image fusion, change detection or video mosaic applications. In this paper, a robust feature extractor technique for FORMOSAT-2 image rectification is applied and discusses how to improve the feature matching algorithm to improve the performance of remote sensing imagery to correct. The Scale Invariant Features Transform (SIFT) method extracted features are computationally attractive and invariant to image rotation, scale change and illumination. The original algorithm was not developed for remote sensing image features, and the results of applied directly are difficult to get a good match. In this study, a modified SIFT method is proposed and create a semi-automated processes on the applicability of remote sensing satellite images. Used FORMOSAT-2 as an example of SIFT on the applicability of remote sensing satellite images. Modified SIFT algorithm tests on different times, different regions, and different set of satellite images with image matching, the results obtained sufficient image control points, and and the overall accuracy is better than any set of 0.5 pixel. The semi-automated processes can be simplified and Shortened the time required of original that time-consuming, empirical and labor-oriented geometric rectification work. The result got good performance, precise, and more reliable and removed uncertainty of image processing.

    目錄 中文摘要 I Abstract III 致謝 IV 目錄 V 圖目錄 VI 表目錄 VIII 第一章 緒論 1 第一節 研究動機 1 第二節 問題陳述 8 第三節 研究設計 11 第二章 文獻回顧 18 第一節 遙感探測原理 18 第二節 影像位移與影像幾何糾正 20 第三節 影像特徵 23 第四節 影像匹配 29 第三章 SIFT演算法 37 第一節 原始SIFT演算法 37 第二節 修改SIFT演算法原始碼 47 第三節 加強SIFT於不同尺度空間正確性 47 第四節 原始SIFT與修改後SIFT比較 51 第五節 影像匹配精度評估方法 54 第六節 小結 55 第四章 研究成果與分析 56 第一節 研究材料 56 第二節 區域匹配與特徵匹配比較 63 第三節 特徵選取與影像匹配 76 第四節 研究成果分析 86 第五節 半自動化機制建立 94 第五章 結論與建議 99 參考文獻 103 圖目錄 圖1 多光譜影像(上)與全色態影像(下)比較 3 圖2 影像融合可增加影像判釋正確性 4 圖3 不同幾何精度融合結果比較 4 圖4 福衛二號Pan與MS影像位移示意圖 5 圖5 影像內不同波段位移情形 6 圖6 福衛二號原始全色態影像 7 圖7 原始ASTER(左)與福衛二號(右)多光譜影像 7 圖8 左為ASTER與福衛二號Pan影像,右為福衛二號Pan與MS融合結果 7 圖9 研究架構圖 12 圖10 同地區不同時期影像的差異 20 圖11 福衛二號CCD Array感測器示意圖 21 圖12 影像糾正示意圖 22 圖13 原始影像與經系統校正後影像空間方位差異 22 圖14 右圖為精密幾何糾正與左圖正射糾正套疊道路圖比較 23 圖15 顏色與色調範例 24 圖16 形狀範例 24 圖17 影像圖樣範例 24 圖18 影像質地範例 25 圖19 陰影範例 26 圖20 位置範例 26 圖21 關連性範例 26 圖22 左為原始影像,右紅標與綠標為經萃取後點特徵 28 圖23 線狀偵測濾波器 28 圖24 邊緣偵測濾波器 28 圖25 區域匹配示意圖 30 圖26 特徵匹配示意圖 32 圖27 符號樣板 32 圖28 待匹配影像清單 33 圖29 經關係匹配後各分群結果 33 圖30 各尺度空間下影像示意圖 39 圖31 影像轉換為尺度空間示意圖 40 圖32 DoG尺度區域極值計算 40 圖33 自相關主曲率推估特徵點位置分類 42 圖34 方向直方圖確定特徵點方向 43 圖35 特徵描述範例 44 圖36 尺度空間差異過大造成錯誤匹配範例 50 圖37 原始演算法於相同尺度影像匹配結果 52 圖38 修改演算法後於相同尺度影像匹配結果 52 圖39 原始演算法於不同尺度影像匹配結果 53 圖40 修改演算法後於不同尺度影像匹配結果 53 圖41 幾何精確度檢核示意圖 54 圖42 福衛二號Level1與Level2等級影像示意圖 57 圖43 台中地區福衛二號正射融合影像 61 圖44 1972年Landsat MSS影像 62 圖45 2006全台正射鑲嵌影像 62 圖46 原始SIFT全色態與多光譜Band1影像匹配結果 77 圖47 原始SIFT全色態與多光譜Band2影像匹配結果 77 圖48 原始SIFT全色態與多光譜Band3影像匹配結果 78 圖49 原始SIFT全色態與多光譜Band4影像匹配結果 78 圖50 原始演算法匹配結果 79 圖51 衛星影像計算所得各尺度空間呈現 80 圖52 當平滑次數為2與3時匹配點位分布圖 81 圖53 不同邊緣門檻質特徵點分布狀況 83 圖54 Thres=4.5時特徵點分布情況 85 圖55 Thres=5時特徵點分布情況 85 圖56 Thres=6時特徵點分布情況 85 圖57 幾何糾正套疊參考影像成果 90 圖58 半自動化機制流程圖 94 圖59 ArcGIS坐標轉換模組流程圖 96 圖60 PCI Geomatica OrthoEngine幾何糾正流程圖 97   表目錄 表1 國內常用光學遙測資源衛星規格 2 表2 不同匹配方法優缺點比較表 34 表3 影像特徵類型及其相關研究 35 表4 SIFT各主要參數意義及其影響 44 表5 SIFT、PCA-SIFT與SURF比較結果 46 表6 不同尺度重複匹配案例屬性列表 49 表7 不同尺度重複匹配案例影像列表 49 表8 演算法修正前後於相同尺度影像匹配結果比較 52 表9 演算法修正前後於不同尺度影像匹配結果比較 53 表10 福衛二號相關規格說明 56 表11 都市地區影像 58 表12 非都市地區影像 59 表13 多角度匹配影像 60 表14 Landsat MSS光譜波段範圍 61 表15 區域匹配測試影像對一 63 表16 區域匹配測試影像對二 64 表17 區域匹配測試影像對三 64 表18 區域匹配測試影像對四 64 表19 區域匹配測試影像對五 65 表20 原始全色態影像區域匹配結果 65 表21 全色態影像區域匹配點位分佈 66 表22 原始多光譜影像區域匹配結果 67 表23 原始多光譜影像區域匹配點位分佈 68 表24 Level 2多光譜影像區域匹配結果 69 表25 Level 2多光譜影像區域匹配點位分佈 69 表26 不同尺度原始影像區域匹配結果 70 表27 不同尺度原始影像區域匹配點位分佈 71 表28 不同尺度Level 2影像區域匹配結果 72 表29 不同尺度Level 2影像區域匹配點位分佈 72 表30 同尺度全色態原始影像特徵匹配結果 73 表31 同尺度全色態原始影像特徵匹配點位分佈 73 表32 同尺度多光譜原始影像特徵匹配結果 74 表33 同尺度多光譜原始影像特徵匹配點位分佈 74 表34 同尺度多光譜Level 2影像特徵匹配結果 74 表35 同尺度多光譜Level 2影像特徵匹配點位分佈 74 表36 不同尺度全色態與多光譜原始影像特徵匹配結果 75 表37 不同尺度全色態與多光譜原始影像特徵匹配點位分佈 75 表38 不同尺度全色態影像與多光譜中各波段影像特徵匹配成果 75 表39 不同尺度全色態影像與多光譜中各波段影像特徵匹配點位分布 76 表40 原演算法各參數建議值 79 表41 原演算法匹配結果 79 表42 各尺度初始萃取特徵點個數 80 表43 全色態影像不同平滑化次數下萃取特徵點個數 80 表44 遙測影像在不同平滑化次數下匹配成功特徵點個數 81 表45 全色態影像不同尺度極值門檻萃取特徵點個數 82 表46 全色態影像不同邊緣門檻萃取特徵點個數 83 表47 不同匹配門檻比較 84 表48 都市測試區影像資訊 86 表49 各測試區人工進行幾何糾正成果 86 表50 不同尺度全色態影像與多光譜中各波段影像特徵匹配人工GCP分布 87 表51 非都市區各測試區Band1匹配點位分布 88 表52 Site1匹配結果與其誤差量 88 表53 Site2匹配結果與其誤差量 88 表54 Site3匹配結果與其誤差量 89 表55 Site4匹配結果與其誤差量 89 表56 影像對一匹配結果與點位分布 91 表57 影像對二匹配結果與點位分布 91 表58 影像對三匹配結果與點位分布 92 表59 Landsat影像與福衛二號Band1匹配結果與點位分布 93 表60 Landsat影像與福衛二號Band2匹配結果與點位分布 93 表61 Landsat影像與福衛二號Band3匹配結果與點位分布 93 表62 影像處理效率比較表 101

    中文部分:
    王向军, 王研, 李智. (2007). 基于特征角点的目标跟踪和快速识别算法研究. 光学学报, 27(002), 360–364.
    王佳珮. (2004). 方差與協方差分量於 Radarsat-1 地塊影像匹配之研究 Investigation on Image Matching by Variance-Covariance Components.
    王科植, Wang, K. (2007). 結合Adaboost與SIFT特徵之手勢辨識系統. Text, . Retrieved October 9, 2010, from http://ntur.lib.ntu.edu.tw/handle/246246/58428
    何維信. (1991). 遙測影像地形情報資訊系統,行政院國防科技發展推行委員會,專題研究計畫成果報告,36-80。
    何維信. (1995). 航空攝影測量學. 大中國圖書公司.
    吳成柯. (1993). 等譯,“數位影像處理”, 儒林, 4.6. 1 彩色基礎. In Page (s) (pp. 221–223).
    吳究, 張奇, 劉銘哲. (2009). 基於尺度不變特徵點轉換之精密多元影像套合. Journal of Photogrammetry and Remote Sensing, 14(2), 141–155.
    吳怡燊. (2003). 影像控制區塊自動化量測及方位求解作業之探討, 國立台灣大學土木研究所碩士論文.
    吳華泰. (2003). 整合特徵資訊的區域匹配法研究, 國立台灣大學土木工程研究所論文.
    李政道. (1999). 特徵匹配於影像起始套合應用之研究, 國立中央大學土木工程研究所碩士論文.
    李遠坤, 陳玲慧. (1999). 數位影像之資訊隱藏技術探討. 資訊安全通訊.
    林志清.(1989). 興趣點操作元應用於立體影像時的品質評估, 國立成功大學航空測量研究所碩士論文.
    林榮章, Lin Rong Zhang.都會區多解像力遙測影像之紋理分析. 碩士, . Retrieved October 10, 2010, from http://ir.lib.nchu.edu.tw/handle/309270000/10349
    洪浩倫, 王志添, 陳錕山. (2007). 利用多尺度匹配自動套疊衛星雷達影像. Journal of Photogrammetry and Remote Sensing, 12(4), 381–401.
    徐百輝. (1995). 應用Hough轉換於框標及共軛影像量測之研究, 國立成功大學測量工程學系碩士論文.
    翁家晧. (2008). 遙測影像套合處理之最佳化控制點自動選取策略, 國立高雄應用科技大學土木工程與防災科技研究所碩士論文.
    郝明非, 张建秋, 胡波. (2007). 一种超复数鲁棒相关图像配准算法. 复旦学报: 自然科学版, 46(001), 91–95.
    高富强, 张帆. (2005). 一种快速彩色图像匹配算法. 计算机应用, 25(011), 2604–2605.
    張庭榮. (2007). SIFT演算法於立體對影像匹配與影像檢索應用之研究, 國立高雄應用科技大學土木工程與防災科技研究所碩士論文.
    連國珍. (2001). 數位影像處理. 台北: 儒林.
    陳良健.(1997).遙測影像之整合於地表變遷偵測之應用(III): 子計畫一: 遙測影像之整合中光學探測器影像之幾何處理,國科會專題研究計畫簡要報告, 4頁。
    陳怡婷. (2008). SIFT特徵匹配於自動空中三角之應用與分析, 國立高雄應用科技大學土木工程與防災科技研究所碩士論文.
    陳彥良, Yen-liang Chen. (2007, June 26). 一個不同曝光時間影像序列之強健特徵導向影像定位法. 碩士, . Retrieved October 10, 2010, from http://ir.lib.nchu.edu.tw/handle/309270000/51633
    陳敏新, 陳繼藩. (2006). 視訊資料中目標物追蹤及定位之研究. Journal of Photogrammetry and Remote Sensing, 11(2), 201–211.
    陳耀賢. (1991). 數位影像匹配及其對相似性評估能力之研究, 國立成功大學航空測量工程研究所碩士論文.
    曾智敏. (2005). 航照像對共軛點匹配自動化研究, 私立逢甲大學土地管理學系碩士論文.
    黃漢哲. (2009). SIFT演算法應用於航測影像拼接之研究, 國立中山大學海洋環境及工程學系研究所論文.
    劉銘哲. (2008). 研究不同資源衛星影像之匹配與套合 Study on Image Matching and Registration for Different Resource Satellite Images.
    劉鴻明, 蔡孟達, 張元翔. (2005). 應用於影像縮放技術之內插法評估研究, 私立中原大學資訊工程學系.
    谢凡, 秦世引. (2008). 基于 SIFT 的单目移动机器人宽基线立体匹配. 仪器仪表学报, 29(011), 2247–2252.

    英文部分:
    Abdel-Hakim, A., & Farag, A. (n.d.). CSIFT: A SIFT Descriptor with Color Invariant Characteristics. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2 (CVPR'06) (pp. 1978-1983). Presented at the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2 (CVPR'06), New York, NY, USA. doi:10.1109/CVPR.2006.95.
    Ackermann, F. (1984). Digital image correlation: performance and potential application in photogrammetry. The Photogrammetric Record, 11(64), 429–439.
    Akira Suga, Keita Fukuda, Tetsuya Takiguchi, & Yasuo Ariki. (2008). Object recognition and segmentation using SIFT and Graph Cuts. In 2008 19th International Conference on Pattern Recognition (pp. 1-4). Presented at the 2008 19th International Conference on Pattern Recognition (ICPR), Tampa, FL, USA. doi:10.1109/ICPR.2008.4761400.
    Alparone, L., Baronti, S., Garzelli, A., & Nencini, F. (2004). Landsat ETM+ and SAR image fusion based on generalized intensity modulation. Geoscience and Remote Sensing, IEEE Transactions on, 42(12), 2832–2839.
    Arya, K. V., Gupta, P., Kalra, P. K., & Mitra, P. (2007). Image registration using robust M-estimators. Pattern Recognition Letters, 28(15), 1957–1968.
    Avcibas, I., Sankur, B., & Sayood, K. (2002). Statistical evaluation of image quality measures. Journal of Electronic Imaging, 11(2), 206-223.
    Baillard, C., & Dissard, O. (2000). A stereo matching algorithm for urban digital elevation models. Photogrammetric Engineering & Remote Sensin, 66(9), 1119-1128.
    Balletti, C. (2000). Analytical and quantitative methods for the analysis of the geometrical content of historical cartography. International Archives of Photogrammetry and Remote Sensing, 33(B5/1; PART 5), 30–37.
    Balletti, C., & Guerra, F. (2009). Image matching for historical maps comparison. e-Perimetron, 4(3), 180–186.
    Baumberg, A. (2000). Reliable Feature Matching across Widely Separated Views. In Computer Vision and Pattern Recognition, IEEE Computer Society Conference on (Vol. 1, p. 1774). Los Alamitos, CA, USA: IEEE Computer Society. doi:http://doi.ieeecomputersociety.org/10.1109/CVPR.2000.855899
    Bay, H., Tuytelaars, T., & Van Gool, L. (2006). Surf: Speeded up robust features. IN ECCV, 1, 404--417.
    Bentoutou, Y., Taleb, N., Kpalma, K., & Ronsin, J. (2005). An automatic image registration for applications in remote sensing. Geoscience and Remote Sensing, IEEE Transactions on, 43(9), 2127–2137.
    Brown, L. G. (1992). A survey of image registration techniques. ACM Computing Surveys, 24(4), 325-376. doi:10.1145/146370.146374
    Burghouts, G. J., & Geusebroek, J. (2009). Performance evaluation of local colour invariants. Comput. Vis. Image Underst., 113(1), 48-62.
    CARPER, W., LILLESAND, T., & KIEFER, R. (1990). The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogrammetric Engineering and remote sensing, 56, 459–467.
    Chalermwat, P. (1999). High performance automatic image registration for remote sensing. Citeseer.
    Chang, T., & Kuo, C. C. (1993). Texture analysis and classification with tree-structured wavelet transform. Image Processing, IEEE Transactions on, 2(4), 429–441.
    Chen, H. M., Arora, M. K., & Varshney, P. K. (2003). Mutual information-based image registration for remote sensing data. International Journal of Remote Sensing, 24(18), 3701–3706.
    Cheng, J. K., & Huang, T. S. (1984). Image registration by matching relational structures. Pattern Recognition, 17(1), 149–159.
    Cheng-Yuan Tang, Yi-Leh Wu, Maw-Kae Hor, & Wen-Hung Wang. (2008). Modified sift descriptor for image matching under interference. In 2008 International Conference on Machine Learning and Cybernetics (pp. 3294-3300). Presented at the 2008 International Conference on Machine Learning and Cybernetics (ICMLC), Kunming, China. doi:10.1109/ICMLC.2008.4620974
    Chisholm, N. W. T., & Collin, R. L. (1988). Artificial GCPs in aircraft and satellite scanner imagery. International Journal of Remote Sensing, 9(4), 799–821.
    Chum, J. M., Urban, M., & Pajdla, T. (2002). Robust wide baseline stereo from maximally stable extremal regions. In British Machine Vision Conference (Vol. 72).
    Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., & Marchal, G. (1995). Automated multi-modality image registration based on information theory. In Information processing in medical imaging (Vol. 14, p. 263).
    Deng, H., Zhang, W., Mortensen, E., Dietterich, T., & Shapiro, L. (2007). Principal Curvature-Based Region Detector for Object Recognition. In 2007 IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-8). Presented at the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA. doi:10.1109/CVPR.2007.382972.
    Derenyi, E. E., & Saleh, R. K. (2002). Effect Of Resampling On The Geometric And Radiometric Fidelity Of Digital Images. In Geoscience and Remote Sensing Symposium, 1989. IGARSS'89. 12th Canadian Symposium on Remote Sensing., 1989 International (Vol. 2, pp. 620–623).
    Derpanis, K. G. (2004). The Harris corner detector. Retrieved February, 2, 2009.
    Dickscheid, T., Schindler, F., & Förstner, W. (n.d.). Coding Images with Local Features. International Journal of Computer Vision, 1–21.
    Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis.
    F\örstner, W., & G\ülch, E. (1987). A fast operator for detection and precise location of distinct points, corners and centres of circular features. In ISPRS Intercommission Workshop, Interlaken (pp. 149–155).
    Feng Zhao, Qingming Huang, & Wen Gao. (n.d.). Image Matching by Normalized Cross-Correlation. In 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings (pp. II-729-II-732). Presented at the 2006 IEEE International Conference on Acoustics Speed and Signal Processing, Toulouse, France. doi:10.1109/ICASSP.2006.1660446.
    Forssen, P., & Lowe, D. G. (2007). Shape Descriptors for Maximally Stable Extremal Regions. In 2007 IEEE 11th International Conference on Computer Vision (pp. 1-8). Presented at the 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil. doi:10.1109/ICCV.2007.4409025.
    Förstner, W. (1986). A feature based correspondence algorithm for image matching. International Archives of Photogrammetry and Remote Sensing, 26(3), 150–166.
    Garzelli, A., & Nencini, F. (2005). Interband structure modeling for Pan-sharpening of very high-resolution multispectral images. Inf. Fusion, 6(3), 213-224.
    Gonzalez, R. C., & Woods, R. E. (2001). Digital Image Processing Prentice Hall. New Jersey.
    Gore, A. (1998). The digital earth: Understanding our planet in the 21st century. Australian surveyor, 43(2), 89–91.
    Goshtasby, A. (2005). 2-D and 3-D image registration for medical, remote sensing, and industrial applications. Wiley-Interscience.
    Gruen, A., & Akca, D. (2005). Least squares 3D surface and curve matching. ISPRS Journal of Photogrammetry and Remote Sensing, 59(3), 151–174.
    Guide, E. F. (2005). Leica Geosystems Geospatial Imaging. Norcross, GA, 30092.
    Haralick, R. M., & Shapiro, L. G. (1992). Computer and robot vision. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.
    Harris, C., & Stephens, M. (1988). A Combined Corner and Edge Detection. In Proceedings of The Fourth Alvey Vision Conference (pp. 147-151). Retrieved from http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf
    Harris, C. (1993). Geometry from visual motion. In Active vision (pp. 263-284). MIT Press. Retrieved from http://portal.acm.org/citation.cfm?id=163245
    Hasan, M., Jia, X., Robles-Kelly, A., Zhou, J., & Pickering, M. R. (n.d.). MULTI-SPECTRAL REMOTE SENSING IMAGE REGISTRATION VIA SPATIAL RELATIONSHIP ANALYSIS ON SIFT KEYPOINTS.
    Höhle, J. (2002). Automated Orientation of Aerial Images. Bildteknik: Image Science, (1), 91–101.
    Hsieh, J. W., Liao, H. Y., Fan, K. C., Ko, M. T., & Hung, Y. P. (1997). Image registration using a new edge-based approach. Computer Vision and Image Understanding, 67(2), 112–130.
    Hu, R., Shi, R., Shen, I., & Chen, W. (2007). Video stabilization using scale-invariant features.
    Jensen, J. (2005). Introductory digital image processing : a remote sensing perspective (3rd ed.). Upper Saddle River N.J.: Prentice Hall.
    Jensen, J. (2007). Remote sensing of the environment : an earth resource perspective (2nd ed.). Upper Saddle River NJ: Pearson Prentice Hall.
    Jensen, K., & Anastassiou, D. (1995). Subpixel edge localization and the interpolation of still images. IEEE Transactions on Image Processing, 4(3), 285-295. doi:10.1109/83.366477
    Juan, L., & Gwun, O. (2009). A comparison of SIFT, PCA-SIFT and SURF. International Journal of Image Processing (IJIP), 3(4), 143.
    Ke, Y., & Sukthankar, R. (2004). PCA-SIFT: A more distinctive representation for local image descriptors.
    Koren, R., & Yitzhaky, Y. (2006). Automatic selection of edge detector parameters based on spatial and statistical measures. Computer Vision and Image Understanding, 102(2), 204–213.
    Lee, J. S., Sun, Y. N., Chen, C. H., & Tsai, C. T. (1993). Wavelet based corner detection. Pattern Recognition, 26(6), 853–865.
    Lewis, J. P. (1995a). Fast template matching. In Vision Interface (Vol. 10, pp. 120–123).
    Lewis, J. P. (1995b). Fast normalized cross-correlation. In Vision Interface (Vol. 10, pp. 120–123).
    Lillesand, T. (2000). Remote sensing and image interpretation (4th ed.). New York: John Wiley & Sons.
    Lindeberg, T. (1993). Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus-of-attention. International Journal of Computer Vision, 11(3), 283–318.
    Lindeberg, T. (1994). Scale-space theory: A basic tool for analyzing structures at different scales. Journal of applied statistics, 21(1), 225–270.
    Lindeberg, T., & Eklundh, J. O. (1991). On the computation of a scale-space primal sketch. Journal of Visual Communication and Image Representation, 2(1), 55–78.
    Lindeberg, T., & G\aarding, J. (1997). Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure* 1. Image and Vision Computing, 15(6), 415–434.
    Lo, T. W., & Siebert, J. P. (2009). Local feature extraction and matching on range images: 2.5 D SIFT. Computer Vision and Image Understanding, 113(12), 1235–1250.
    Lowe, D. (1991). Fitting parameterized three-dimensional models to images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(5), 441-450. doi:10.1109/34.134043
    Lowe, D. (1999). Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision (pp. 1150-1157 vol.2). Presented at the Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece. doi:10.1109/ICCV.1999.790410.
    Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2), 91-110. doi:10.1023/B:VISI.0000029664.99615.94.
    Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London. Series B, Biological Sciences, 187–217.
    Marr, D., & Poggio, T. (1979). A computational theory of human stereo vision. Proceedings of the Royal Society of London. Series B, Biological Sciences, 204(1156), 301–328.
    Maschotta, R., Boymann, S., & Hoppe, U. (2007). Comparison of feature-list cross-correlation algorithms with common cross-correlation algorithms. EURASIP Journal on Applied Signal Processing, 2007(1), 52.
    Mason, R., Brookes, T., & Rumsey, F. (2005). Frequency dependency of the relationship between perceived auditory source width and the interaural cross-correlation coefficient for time-invariant stimuli. The Journal of the Acoustical Society of America, 117, 1337.
    Matas, J., Chum, O., Urban, M., & Pajdla, T. (2004). Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing, 22(10), 761-767. doi:10.1016/j.imavis.2004.02.006.
    Mather, P. M. (2004). Computer processing of remotely sensed images: an introduction. Wiley.
    Matsuoka, R., Sone, M., Fukue, K., Cho, K., & Shimoda, H. (n.d.). Quantitative analysis of image quality of lossy compression images. entropy, 3(4.13), 4–06.
    Meijering, E., & Unser, M. (2003). A note on cubic convolution interpolation. IEEE Transactions on Image Processing, 12(4), 477-479. doi:10.1109/TIP.2003.811493
    Mikolajczyk, K., & Schmid, C. (2002). An affine invariant interest point detector. PROC. EUROPEAN CONF. COMPUTER VISION, 2350, 128--142.
    Mikolajczyk, K., & Schmid, C. (2004). Scale & affine invariant interest point detectors. International Journal of Computer Vision, 60(1), 63–86.
    Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE transactions on pattern analysis and machine intelligence, 1615–1630.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., et al. (2005). A comparison of affine region detectors. International journal of computer vision, 65(1), 43–72.
    Mokhber, A., Achard, C., & Milgram, M. (2008). Recognition of human behavior by space-time silhouette characterization. Pattern Recognition Letters, 29(1), 81-89. doi:10.1016/j.patrec.2007.08.016.
    Monika Arora. (2009). Detection of Abnormalities in MRI Images using Texture Analysis. Electrical and Instrumentation Engineering Department of Thapar University.
    Moravec, H. P., & Stanford Univ., C. D. O. C. S. (1980). Obstacle avoidance and navigation in the real world by a seeing robot rover. Department of Computer Science, Stanford University.
    Nemra, A., & Aouf, N. (2009). Robust feature extraction and correspondence for UAV map building. In 2009 17th Mediterranean Conference on Control and Automation (pp. 922-927). Presented at the 2009 17th Mediterranean Conference on Control and Automation (MED), Thessaloniki, Greece. doi:10.1109/MED.2009.5164663.
    Nencini, F., Garzelli, A., Baronti, S., & Alparone, L. (2007). Remote sensing image fusion using the curvelet transform. Information Fusion, 8(2), 143-156. doi:10.1016/j.inffus.2006.02.001.
    Nieke, J., Schwarzer, H., Neumann, A., & Zimmermann, G. (1997). Imaging spaceborne and airborne sensor systems in the beginning of the next century. In Proc. SPIE (Vol. 3221, pp. 581–592).
    Oh, Y. S., Sim, D. G., Park, R. H., Kim, R. C., Lee, S. U., & Kim, I. C. (2006). Absolute position estimation using IRS satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 60(4), 256–268.
    Ohbuchi, R., & Kawamura, S. (2009). Shape-Based Autotagging of 3D Models for Retrieval. Semantic Multimedia, 137–148.
    Olson, C. F. (2002). Maximum-likelihood image matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 853–857.
    Olson, C. F., & Matthies, L. H. (1998). Maximum likelihood rover localization by matching range maps. In IEEE International Conference on Robotics and Automation (pp. 272–277).
    Priebbenow, R., & Clerici, E. (1988). Cartographic applications of SPOT imagery. International Archives of Photogrammetry and Remote Sensing, 27(B4), 289–297.
    Richards, J. A., & Jia, X. (1999). Remote Sensing Digital Image Analysis: An Introduction. (D. E. Ricken & W. Gessner, Eds.). Springer-Verlag New York, Inc. Retrieved from http://portal.acm.org/citation.cfm?id=553536
    Richardson, I. (2003). H.264 and MPEG-4 Video Compression: Video Coding for Next Generation Multimedia. Wiley. Retrieved from http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0470848375
    Roche, A., Malandain, G., & Ayache, N. (2000). Unifying maximum likelihood approaches in medical image registration. International Journal of Imaging Systems and Technology, 11(1), 71–80.
    Schenk, T. (1999). Digital photogrammetry. TerraScience.
    Schenk, T. (2004). From point-based to feature-based aerial triangulation. ISPRS journal of photogrammetry and remote sensing, 58(5-6), 315–329.
    Schmid, C., Mohr, R., & Bauckhage, C. (2000). Evaluation of interest point detectors. International Journal of computer vision, 37(2), 151–172.
    Se, S., Lowe, D., & Little, J. (2001). Vision-based mobile robot localization and mapping using scale-invariant features. In IEEE international conference on robotics and automation (Vol. 2, pp. 2051–2058).
    Shan, J. (2001). An approach to single image automatic orientation and point determination by using ortho-images and a DTM. The Photogrammetric Record, 17(98), 343–353.
    Shark, L. K., Kurekin, A. A., & Matuszewski, B. J. (2007). Development and evaluation of fast branch-and-bound algorithm for feature matching based on line segments. Pattern Recognition, 40(5), 1432–1450.
    Shi, J., & Tomasi, C. (2002). Good features to track. In Computer Vision and Pattern Recognition, 1994. Proceedings CVPR'94., 1994 IEEE Computer Society Conference on (pp. 593–600).
    Shikin, E. V., & Plis, A. I. (1995). Handbook on Splines for the User. CRC.
    Shokoufandeh, A., Marsic, I., & Dickinson, S. J. (1999). View-based object recognition using saliency maps. Image and Vision Computing, 17(5-6), 445–460.
    Shrestha, B., O’Hara, C. G., & Younan, N. H. (2005). Jpeg2000: Image quality metrics. American Society for Photogrammetry and Remote Sensing. Baltimore, USA.
    Smith, S. M. (1992). Feature based image sequence understanding. University of Oxford.
    Smith, S. M., & Brady, J. M. (1997). SUSAN—A new approach to low level image processing. International journal of computer vision, 23(1), 45–78.
    Sobel, I., & Feldman, G. (1968). A 3x3 isotropic gradient operator for image processing. Presentation for Stanford Artificial Project.
    Sohn, H., & Kim, K. (2000). Horizontal positional accuracy assessment of historical ARGON satellite photography. KSCE Journal of Civil Engineering, 4(1), 59-65. doi:10.1007/BF02829175
    Sonka, M., Hlavac, V., & Boyle, R. (1999). Image processing, analysis, and machine vision second edition. International Thomson.
    Steger, C. (1998). An unbiased detector of curvilinear structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(2), 113-125. doi:10.1109/34.659930
    Stephane, M., & Sifen, Z. (1992). Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and machine intelligence, 14(7), 710–732.
    Sussman, M. S., & Wright, G. A. (2003). Factors affecting the correlation coefficient template matching algorithm with application to real-time 2-D coronary artery MR imaging. Medical Imaging, IEEE Transactions on, 22(2), 206–216.
    Thrun, S., Burgard, W., & Fox, D. (1998). A probabilistic approach to concurrent mapping and localization for mobile robots. Autonomous Robots, 5(3), 253–271.
    Toutin, T., & Chénier, R. (2004). GCP Requirement For High-Resolution Satellite Mapping. In Atti de: XXth ISPRS Congress, Istanbul (pp. 12–23).
    Trajkovi, M., & Hedley, M. (1998). Fast corner detection. Image and Vision Computing, 16(2), 75–87.
    Tsai, D. M., & Lin, C. T. (2003). Fast normalized cross correlation for defect detection. Pattern Recognition Letters, 24(15), 2625–2631.
    Tsai, D. M., Lin, C. T., & Chen, J. F. (2003). The evaluation of normalized cross correlations for defect detection. Pattern Recognition Letters, 24(15), 2525–2535.
    Tseng, Y. H., Tzen, J. J., Tang, K. P., & Lin, S. H. (1997). Image-to-image registration by matching area features using fourier descriptors and neural networks. Photogrammetric engineering and remote sensing, 63(8), 975–983.
    Valgren, C., & Lilienthal, A. J. (2010). SIFT, SURF & seasons: Appearance-based long-term localization in outdoor environments. Robotics and Autonomous Systems, 58(2), 149-156. doi:10.1016/j.robot.2009.09.010
    Vural, M. F., Yardimci, Y., & Temizel, A. (2010). Registration of multispectral satellite images with Orientation-Restricted SIFT. In Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009 (Vol. 3).
    Wang, Z., Bovik, A. C., & Lu, L. (2002). Why is image quality assessment so difficult? In IEEE International Conference on Acoustics Speech and Signal Processing (Vol. 4, pp. 3313–3316).
    Wells III, W. M., Viola, P., Atsumi, H., Nakajima, S., & Kikinis, R. (1996). Multi-modal volume registration by maximization of mutual information. Medical image analysis, 1(1), 35–51.
    Wen, C., Guyer, D. E., & Li, W. (2009). Local feature-based identification and classification for orchard insects. Biosystems Engineering, 104(3), 299-307. doi:10.1016/j.biosystemseng.2009.07.002
    Wilson, H. R., & Giese, S. C. (1977). Threshold visibility of frequency gradient patterns. Vision Research, 17(10), 1177–1190.
    Witkin, A. P. (1987). Scale-space filtering. Google Patents.
    Wong, R. Y., & Hall, E. L. (1978). Sequential Hierarchical Scene Matching. IEEE Trans. Comput., 27(4), 359-366.
    Wu, C., Fraundorfer, F., Frahm, J. M., Snoeyink, J., & Pollefeys, M. (2010). IMAGE LOCALIZATION IN SA℡LITE IMAGERY WITH FEATURE-BASED INDEXING.
    Xu, Y., Saber, E., & Tekalp, A. M. (2003). Object segmentation and labeling by learning from examples. Image Processing, IEEE Transactions on, 12(6), 627–638.
    Zhang, L., & Gruen, A. (2006). Multi-image matching for DSM generation from IKONOS imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 60(3), 195–211.
    Zhang, Y. (2004). Understanding image fusion. Photogrammetric engineering and remote sensing, 70(6), 653–760.
    Zheng, Q., & Chellappa, R. (1993). A computational vision approach to image registration. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2(3), 311-326. doi:10.1109/83.236535
    Zitova, B., & Flusser, J. (2003). Image registration methods: a survey. Image and vision computing, 21(11), 977–1000.

    網頁資料:
    ASTER User Handbook, 2003, http://asterweb.jpl.nasa.gov/default.htm
    Eurimage Inc., http://www.eurimage.com
    Federal Science Policy Office, http://telsat.belspo.be
    IDL Online Help,2006, http://idlastro.gsfc.nasa.gov
    Landsat 7 Users Handbook, 2003 , http://ltpwww.gsfc.nasa.gov
    PIA Consortium, School of Computer Science, Carnegie Mellon University, http://www.consortium.ri.cmu.edu/index.php
    RapidEye AG, http://www.rapideye.de
    Space Imaging Inc., http://www.spaceimaging.com
    SPOT Inc., http://www.spot.com
    國家太空中心,http://www.nspo.gov.tw

    下載圖示
    QR CODE