研究生: |
李妍萱 Lee, Yan-Suan |
---|---|
論文名稱: |
評估兩種海藻糖類似物在阿茲海默氏症模式鼠之潛在療效 Evaluation of the therapeutic potential of two trehalose analogs in Alzheimer's disease |
指導教授: |
謝秀梅
Hsieh, Hsiu-Mei |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 阿茲海默症 、海藻糖類似物 、乳果糖 、蜜二糖 、Aβ25-35寡聚體 、自噬作用 |
英文關鍵詞: | Alzheimer’s disease, Trehalose analogs, lactulose, melibiose, oligomeric Aβ25-35, Autophagy |
DOI URL: | http://doi.org/10.6345/NTNU201900448 |
論文種類: | 學術論文 |
相關次數: | 點閱:246 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
AD為常見的神經退化性疾病,通常伴隨著海馬迴的損傷以及認知功能上的缺失。其重要病理特徵為類澱粉斑塊(Aβ)的堆積以及tau蛋白的過度磷酸化所導致的神經纖維糾結。近期有研究顯示海藻糖對AD模式鼠具有改善認知功能障礙的效果,進而能夠有效抑制類澱粉斑塊的聚集並降低其造成的毒性。但是在哺乳動物的消化道中海藻糖(trehalose)會被海藻糖水解酶(trehalase)分解成葡萄糖,因此在攝取後較無法有效地作用在目標組織,造成其效力的降低。
因此在本研究中,我們探討兩種不會被海藻糖水解酶所分解的海藻糖類似物,乳果糖(lactulose)與蜜二糖(melibiose),對於AD模式鼠是否具有潛在的神經保護效果。首先使用經Aβ25-35寡聚體處理之小鼠海馬迴初級神經細胞,建立一個初步的篩藥平台,發現乳果糖能顯著保護神經細胞的分支數目,最後篩選出乳果糖進入動物實驗。我們先對小鼠進行海藻糖或乳果糖管餵5-6天後,以立體定位手術注射Aβ25-35寡聚體至小鼠之雙側海馬迴以誘發AD病徵,並以此模式分析海藻糖與乳果糖對於小鼠之行為以及相關病理特徵上之影響與其相關分子機制。在此實驗中發現乳果糖與海藻糖能夠改善小鼠的空間學習能力以及短期記憶的能力,且能夠降低小鼠海馬迴中Aβ堆積。另外,乳果糖與海藻糖亦能減少小鼠海馬迴中星狀膠細胞的數量,顯示神經損傷有降低的現像,並且提升與自噬作用中相關蛋白質的表現量,我們推論乳果糖與海藻糖透過促進自噬作用進而清除對細胞造成毒性與損害的Aβ,以對抗於海馬迴CA1區域急性注射Aβ25-35寡聚體所造成的傷害。在上述的各種分析中,乳果糖與海藻糖的功效不相上下,但是在改善長期記憶與突觸功能蛋白表現方面,乳果糖更勝於海藻糖,因此我們認為乳果糖具有被開發成為AD預防性或治療性藥物之潛力。
Alzheimer’s disease (AD) is the most common neurodegenerative disease associated with progressive damage in hippocampal neurons and cognitive dysfunctions. Both the accumulation of beta-amyloid peptides (Aβ) and tau protein phosphorylation are regarded as crucial events in the initiation of AD. Recently, a study shows that trehalose might invoke a suite of neuroprotective mechanisms that can contribute to improving cognitive performance in AD, and is also effective in inhibiting Aβ aggregation and reducing its cytotoxicity. However trehalose is digested into glucose by trehalase and which reduces its’s efficacy in the disease target tissues. Two trehalase-indigestible trehalose analogs, lactulose and melibiose, were identified and could be novel therapeutics for AD. In the study, we first examined the potential of lactulose and melibiose in AD treatment using mouse primary hippocampal neuronal culture under the toxicity of oligomeric Aβ25-35. Lactulose was further chosen to be tested in vivo. Lactulose and trehalose were applied individually to C57BL/6J mice under bilateral intrahippocampal CA1 injection of oligomeric Aβ25-35. We found that administration of lactulose and trehalose attenuated the short-term memory and the cognitive impairment. From pathological analysis, we further found that the pretreatment of lactulose and trehalose decreased the levels of Aβ deposition, neuroinflammation, and increasing the levels of autophagy pathway related proteins. These results suggest that both lactulose and trehalose might reduce the Aβ aggregation through autophagy. Except for the improvements as described, lactulose was even better than trehalose in the enhancement of long-term memory and synaptic protein expression level of AD mouse model. Therefore, lactulose could be potential to be developed into a preventive and/or therapeutic compound for AD.
參考資料
Belton, P. S., & Gil, A. M. (1994). IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme. Biopolymers, 34(7), 957-961. Retrieved from doi:10.1002/bip.360340713
Blanco, A., Alvarez, S., Fresno, M., & Munoz-Fernandez, M. A. (2010). Amyloid-beta induces cyclooxygenase-2 and PGE2 release in human astrocytes in NF-kappa B dependent manner. J Alzheimers Dis, 22(2), 493-505. Retrieved from doi:10.3233/JAD-2010-100309
Carpenter, J. F., & Crowe, J. H. (1989). An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry, 28(9), 3916-3922. Retrieved from doi:10.1021/bi00435a044
Chambon, C., Wegener, N., Gravius, A., & Danysz, W. (2011). Behavioural and cellular effects of exogenous amyloid-beta peptides in rodents. Behav Brain Res, 225(2), 623-641. Retrieved from doi:10.1016/j.bbr.2011.08.024
Chen, Q., & Haddad, G. G. (2004). Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammals. J Exp Biol, 207(Pt 18), 3125-3129. Retrieved from doi:10.1242/jeb.01133
Chen, X., Li, M., Li, L., Xu, S., Huang, D., Ju, M., . . . Gu, H. (2016). Trehalose, sucrose and raffinose are novel activators of autophagy in human keratinocytes through an mTOR-independent pathway. Sci Rep, 6, 28423. Retrieved from doi:10.1038/srep28423
Cheng, D., Hoogenraad, C. C., Rush, J., Ramm, E., Schlager, M. A., Duong, D. M., . . . Peng, J. (2006). Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteomics, 5(6), 1158-1170. Retrieved from doi:10.1074/mcp.D500009-MCP200
Chu, C. T. (2019). Mechanisms of selective autophagy and mitophagy: Implications for neurodegenerative diseases. Neurobiol Dis, 122, 23-34. Retrieved from doi:10.1016/j.nbd.2018.07.015
Crowe, J. H., Crowe, L. M., Oliver, A. E., Tsvetkova, N., Wolkers, W., & Tablin, F. (2001). The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiology, 43(2), 89-105. Retrieved from doi:10.1006/cryo.2001.2353
Davies, J. E., Sarkar, S., & Rubinsztein, D. C. (2006). Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy. Hum Mol Genet, 15(1), 23-31. Retrieved from doi:10.1093/hmg/ddi422
De Bona, P., Giuffrida, M. L., Caraci, F., Copani, A., Pignataro, B., Attanasio, F., . . . Rizzarelli, E. (2009). Design and synthesis of new trehalose-conjugated pentapeptides as inhibitors of Abeta(1-42) fibrillogenesis and toxicity. J Pept Sci, 15(3), 220-228. Retrieved from doi:10.1002/psc.1109
Deininger, M. H., Fimmen, B. A., Thal, D. R., Schluesener, H. J., & Meyermann, R. (2002). Aberrant neuronal and paracellular deposition of endostatin in brains of patients with Alzheimer's disease. J Neurosci, 22(24), 10621-10626. Retrieved from
Du, J., Liang, Y., Xu, F., Sun, B., & Wang, Z. (2013). Trehalose rescues Alzheimer's disease phenotypes in APP/PS1 transgenic mice. J Pharm Pharmacol, 65(12), 1753-1756. Retrieved from doi:10.1111/jphp.12108
Funato, H., Yoshimura, M., Kusui, K., Tamaoka, A., Ishikawa, K., Ohkoshi, N., . . . Ihara, Y. (1998). Quantitation of amyloid beta-protein (A beta) in the cortex during aging and in Alzheimer's disease. Am J Pathol, 152(6), 1633-1640. Retrieved from
Hosseinpour-Moghaddam, K., Caraglia, M., & Sahebkar, A. (2018). Autophagy induction by trehalose: Molecular mechanisms and therapeutic impacts. J Cell Physiol, 233(9), 6524-6543. Retrieved from doi:10.1002/jcp.26583
Iqbal, K., Grundke-Iqbal, I., Zaidi, T., Merz, P. A., Wen, G. Y., Shaikh, S. S., . . . Winblad, B. (1986). Defective brain microtubule assembly in Alzheimer's disease. Lancet, 2(8504), 421-426. Retrieved from doi:10.1016/s0140-6736(86)92134-3
Iqbal, K., Wang, G. P., Grundke-Iqbal, I., & Wisniewski, H. M. (1989). Laboratory diagnostic tests for Alzheimer's disease. Prog Clin Biol Res, 317, 679-687. Retrieved from
Ishihara, R., Taketani, S., Sasai-Takedatsu, M., Kino, M., Tokunaga, R., & Kobayashi, Y. (1997). Molecular cloning, sequencing and expression of cDNA encoding human trehalase. Gene, 202(1-2), 69-74. Retrieved from doi:10.1016/s0378-1119(97)00455-1
Iturriaga, G., Suarez, R., & Nova-Franco, B. (2009). Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci, 10(9), 3793-3810. Retrieved from doi:10.3390/ijms10093793
Jain, N. K., & Roy, I. (2010). Trehalose and protein stability. Curr Protoc Protein Sci, Chapter 4, Unit 4 9. Retrieved from doi:10.1002/0471140864.ps0409s59
Janz, R., Sudhof, T. C., Hammer, R. E., Unni, V., Siegelbaum, S. A., & Bolshakov, V. Y. (1999). Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron, 24(3), 687-700. Retrieved from
Jiang, X., Tian, Q., Wang, Y., Zhou, X. W., Xie, J. Z., Wang, J. Z., & Zhu, L. Q. (2011). Acetyl-L-carnitine ameliorates spatial memory deficits induced by inhibition of phosphoinositol-3 kinase and protein kinase C. J Neurochem, 118(5), 864-878. Retrieved from doi:10.1111/j.1471-4159.2011.07355.x
Karran, E., Mercken, M., & De Strooper, B. (2011). The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov, 10(9), 698-712. Retrieved from doi:10.1038/nrd3505
Kim, H. G., Jeong, H. U., Hong, S. I., & Oh, M. S. (2015). Houttuyniae Herba Attenuates Kainic Acid-Induced Neurotoxicity via Calcium Response Modulation in the Mouse Hippocampus. Planta Med, 81(18), 1697-1704. Retrieved from doi:10.1055/s-0035-1557832
Kruger, U., Wang, Y., Kumar, S., & Mandelkow, E. M. (2012). Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging, 33(10), 2291-2305. Retrieved from doi:10.1016/j.neurobiolaging.2011.11.009
Kubo, T., Nishimura, S., Kumagae, Y., & Kaneko, I. (2002). In vivo conversion of racemized beta-amyloid ([D-Ser 26]A beta 1-40) to truncated and toxic fragments ([D-Ser 26]A beta 25-35/40) and fragment presence in the brains of Alzheimer's patients. J Neurosci Res, 70(3), 474-483. Retrieved from doi:10.1002/jnr.10391
Lee, G. C., Lin, C. H., Tao, Y. C., Yang, J. M., Hsu, K. C., Huang, Y. J., . . . Lee-Chen, G. J. (2015). The potential of lactulose and melibiose, two novel trehalase-indigestible and autophagy-inducing disaccharides, for polyQ-mediated neurodegenerative disease treatment. Neurotoxicology, 48, 120-130. Retrieved from doi:10.1016/j.neuro.2015.03.009
Lee, V. K. (1991). Language changes and Alzheimer's disease: a literature review. J Gerontol Nurs, 17(1), 16-20. Retrieved from
Lin, C. H., Wu, Y. R., Yang, J. M., Chen, W. L., Chao, C. Y., Chen, I. C., . . . Lee-Chen, G. J. (2016). Novel Lactulose and Melibiose Targeting Autophagy to Reduce PolyQ Aggregation in Cell Models of Spinocerebellar Ataxia 3. CNS Neurol Disord Drug Targets, 15(3), 351-359. Retrieved from
Liu, R., Barkhordarian, H., Emadi, S., Park, C. B., & Sierks, M. R. (2005). Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiol Dis, 20(1), 74-81. Retrieved from doi:10.1016/j.nbd.2005.02.003
Martano, G., Gerosa, L., Prada, I., Garrone, G., Krogh, V., Verderio, C., & Passafaro, M. (2017). Biosynthesis of Astrocytic Trehalose Regulates Neuronal Arborization in Hippocampal Neurons. ACS Chem Neurosci, 8(9), 1865-1872. Retrieved from doi:10.1021/acschemneuro.7b00177
Ohtake, S., & Wang, Y. J. (2011). Trehalose: current use and future applications. J Pharm Sci, 100(6), 2020-2053. Retrieved from doi:10.1002/jps.22458
Oku, T., & Okazaki, M. (1998). Transitory laxative threshold of trehalose and lactulose in healthy women. J Nutr Sci Vitaminol (Tokyo), 44(6), 787-798. Retrieved from
Parzych, K. R., & Klionsky, D. J. (2014). An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal, 20(3), 460-473. Retrieved from doi:10.1089/ars.2013.5371
Paul, M. J. (2008). Trehalose 6-phosphate: a signal of sucrose status. Biochem J, 412(1), e1-2. Retrieved from doi:10.1042/BJ20080598
Perucho, J., Casarejos, M. J., Gomez, A., Solano, R. M., de Yebenes, J. G., & Mena, M. A. (2012). Trehalose protects from aggravation of amyloid pathology induced by isoflurane anesthesia in APP(swe) mutant mice. Curr Alzheimer Res, 9(3), 334-343. Retrieved from
Portbury, S. D., Hare, D. J., Sgambelloni, C., Perronnes, K., Portbury, A. J., Finkelstein, D. I., & Adlard, P. A. (2017). Trehalose Improves Cognition in the Transgenic Tg2576 Mouse Model of Alzheimer's Disease. J Alzheimers Dis, 60(2), 549-560. Retrieved from doi:10.3233/JAD-170322
Reddy, A. S., Izmitli, A., & de Pablo, J. J. (2009). Effect of trehalose on amyloid beta (29-40)-membrane interaction. J Chem Phys, 131(8), 085101. Retrieved from doi:10.1063/1.3193726
Rodriguez-Navarro, J. A., Rodriguez, L., Casarejos, M. J., Solano, R. M., Gomez, A., Perucho, J., . . . Mena, M. A. (2010). Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis, 39(3), 423-438. Retrieved from doi:10.1016/j.nbd.2010.05.014
Roher, A. E., Lowenson, J. D., Clarke, S., Woods, A. S., Cotter, R. J., Gowing, E., & Ball, M. J. (1993). beta-Amyloid-(1-42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci U S A, 90(22), 10836-10840. Retrieved from doi:10.1073/pnas.90.22.10836
Sarkar, S., Davies, J. E., Huang, Z., Tunnacliffe, A., & Rubinsztein, D. C. (2007). Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem, 282(8), 5641-5652. Retrieved from doi:10.1074/jbc.M609532200
Savioz, A., Giannakopoulos, P., Herrmann, F. R., Klein, W. L., Kovari, E., Bouras, C., & Giacobini, E. (2016). A Study of Abeta Oligomers in the Temporal Cortex and Cerebellum of Patients with Neuropathologically Confirmed Alzheimer's Disease Compared to Aged Controls. Neurodegener Dis, 16(5-6), 398-406. Retrieved from doi:10.1159/000446283
Sepulcre, J., Sabuncu, M. R., Becker, A., Sperling, R., & Johnson, K. A. (2013). In vivo characterization of the early states of the amyloid-beta network. Brain, 136(Pt 7), 2239-2252. Retrieved from doi:10.1093/brain/awt146
Tanaka, M., Machida, Y., Niu, S., Ikeda, T., Jana, N. R., Doi, H., . . . Nukina, N. (2004). Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med, 10(2), 148-154. Retrieved from doi:10.1038/nm985
Tarsa, L., & Goda, Y. (2002). Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci U S A, 99(2), 1012-1016. Retrieved from doi:10.1073/pnas.022575999
Tien, N. T., Karaca, I., Tamboli, I. Y., & Walter, J. (2016). Trehalose Alters Subcellular Trafficking and the Metabolism of the Alzheimer-associated Amyloid Precursor Protein. J Biol Chem, 291(20), 10528-10540. Retrieved from doi:10.1074/jbc.M116.719286
Vidal, R. L., Matus, S., Bargsted, L., & Hetz, C. (2014). Targeting autophagy in neurodegenerative diseases. Trends Pharmacol Sci, 35(11), 583-591. Retrieved from doi:10.1016/j.tips.2014.09.002