簡易檢索 / 詳目顯示

研究生: 郭佳詞
Kuo, Chia-Tzu
論文名稱: 開發胺基改性氧化石墨烯之電漿子胜肽適體感測器於臨床血清樣本中人類絨毛膜促性腺激素檢測
Development of amine modified graphene oxide based peptide SPR aptasensor for human chorionic gonadotropin in clinical serum detection
指導教授: 邱南福
Chiu, Nan-Fu
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 62
中文關鍵詞: 胺基修飾氧化石墨烯表面電漿子偶合生物感測晶片人類絨毛膜促性腺激素
英文關鍵詞: Amine modified graphene oxide, Surface plasmon resonance biosensor, human Chorionic Gonadotropin
DOI URL: https://doi.org/10.6345/NTNU202201998
論文種類: 學術論文
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個簡易的胺基修飾法之氧化石墨烯(amine modified graphene oxide, GO-NH2),作為非免疫反應、超高靈敏度表面電漿子共振生物感測器之感測層,用以偵測人類絨毛膜促性腺激素(hCG),此激素已用在多種孕婦問題,諸如:早產、唐氏症、子宮外孕,也和卵巢癌、乳癌、睪丸癌等性腺相關癌症有關聯,此激素在健康未懷孕個體的血漿中約含有0.45 nM 的濃度。而本實驗利用胜肽取代抗體,擁有能夠保存於相對高溫的空間以及製造成本便宜等優點,為了達到早期檢測以及利於商業化, GO-NH2修飾的生物感測器是同時具有高親和性與高靈敏度優勢的技術。
    修飾的步驟將GO中的羥基利用亞硫醯氯(SOCl2)的氯元素取代,生成中間產物氯基修飾氧化石墨烯(GO-Cl),再利用氨水將氯基取代為胺基,採用X射線光電子能普儀(X-ray photoelectron spectroscopy, XPS)驗證,其結果氮元素比例增加至5.7%,而氧元素的比例由原本約27%降至約17%。傅立葉轉換紅外光譜(Fourier transform infrared spectroscopy, FTIR)分析,在1064 〖cm〗^(-1)、1579 〖cm〗^(-1)以及3361 〖cm〗^(-1)的波段均得到氨基的震動吸收峰。藉由共振角模擬的折射值結果為1.55 + C_1 λ/n i,而電化學阻抗模擬得到R_(GO-NH_2 )的阻抗為89.16 Ω,相較於R_GO的733.6 Ω降低了8.23倍。
    重組蛋白實驗中,GO-NH2對於本實驗使用的胜肽親和性比起之前提出的羧基修飾氧化石墨烯(GO-COOH)高出2.45倍,比起傳統晶片,GO- NH2在2 nM的濃度下反應提高了約2.68倍,而線性迴歸斜率提高了1.5倍,並在臨床血清檢測則發現唐氏症樣本的反應高於非唐氏症樣本約1.6倍,並且都擁有良好的迴歸係數。希望在未來可以規劃成唐氏症早期篩檢系統協助臨床醫師進行診斷。

    In this work we present a facile processes amine modified graphene oxide (GO-NH2) as an ultra-sensitive surface plasmon resonance (SPR) probe grafting layer for non-immunization sensing. The GO-NH2 based SPR biosensor was applied in detection of human Chorionic Gonadotropin (hCG), relevant to pregnant disease. Such as premature birth, ectopic pregnancy, and Down's syndrome. It’s also relevant to some cancer about gonad, like ovarian cancer, breast cancer, or testicular cancer. The concentration of hCG in blood plasma of healthy and non-pregnant is around 0.45 nM. Replacing antibody by non-immunization peptide got an opportunity of preserve the probe in relative higher temperature and much lower cost than antibodies. In order to diagnose the patient in the early state and benefit for commercial situation, the characteristic of high resolution GO-NH2 modified bio-chip is a novel and advantage technique.
    The first part of two-step modified approach is substitute the hydroxyl with chloride on GO. The chloride functional graphene oxide (GO-Cl) is obtained through the reaction of GO and thionyl chloride (SOCl2). After that, we utilize ammonia water as nitrogen precursor, and the chloride groups are replaced by amino groups. The primary of facial amine group is identified by X-ray photoelectron spectroscopy (XPS). The ratio of nitrogen and carbon in our experimental parameter is increase to 5.7%, and the ratio of oxygen is changed from 27% to 17%. In the Fourier transform infrared spectroscopy (FTIR) experiment. The absorbed peak of 1064 〖cm〗^(-1), 1579 〖cm〗^(-1), and 3361 〖cm〗^(-1) that absorbed by N are found. The simulation of complex refractive index and the impedance of GO-NH2 is 1.55 + C_1 λ/n i and 89.16 Ω.
    The recombinant protein experiment shows that GO-NH2 sensor-chip is 2.45 times about the affinity of peptide. Comparing in non-immunization diagnostic, the response at 2 nM is 2.68 times greater, and the slope of GO-NH2 linear regression is 1.5 times higher than commercial chip. Last, the clinical blood serum experiment shows high linear regression coefficients.

    致謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 ix 表目錄 xiii 第一章 緒論 1 1.1論文架構 1 1.2研究動機 2 1.3研究目的 3 第二章 理論基礎與文獻回顧 5 2.1表面電漿子共振 5 2.1.1表面電漿子共振生物感測器的發展 5 2.1.2表面電漿子共振理論及生物感測器 5 2.1.3表面電漿子波穿透深度與介電系數的關聯 7 2.1.4 表面電漿子共振生物感測器分子動力學(kinetics) 7 2.2電化學阻抗譜與循環伏安分析法 9 2.2.1電化學阻抗譜(Electrochemical Impedance Spectroscopy, EIS) 9 2.2.2循環伏安分析(Cyclic Voltammetry, CV) 10 2.2.3外加電場分子吸附效應(Stark effect) 11 2.3氧化石墨烯簡介 13 2.3.1氧化石墨烯歷史 13 2.3.2氧化石墨烯的結構 14 2.3.3石墨烯材料的折射系數推導 14 2.3.4類石墨烯界面電漿子特性與費米能階(Fermi level)之探討 15 2.3.5類石墨烯材料生物感測器 17 2.4羧基修飾方法 20 2.4.1草酸修飾法 20 2.4.2氯乙酸修飾法 20 2.5胺基修飾方法 21 2.5.1化學鍵結修飾 21 2.5.2氯取代修飾 22 2.5.3水熱合成修飾 23 2.6粒子界面電位(zeta potential) 24 2.7胜肽感測技術介紹 26 2.7.1噬菌體展示(phage display)胜肽 26 2.7.2噬菌體展示技術種類 26 2.7.3胜肽感測優點 28 第三章 實驗方法 29 3.1實驗步驟 29 3.1.1晶片製作 29 3.1.2晶片清洗 29 3.1.3晶片修飾 30 3.1.4胺基修飾實驗 31 3.1.5折射值模擬實驗 32 3.1.6電化學實驗 33 3.1.7標準樣本實驗 33 3.1.8臨床環境液配製 33 3.1.9臨床樣本實驗 34 3.2耗材 34 3.3儀器設備 35 第四章 結果與討論 36 4.1材料分析 36 4.1.1氧化石墨烯XPS分析 36 4.1.2胺基修飾氧化石墨烯XPS分析 37 4.1.3 XPS元素比例分析 38 4.1.4 EDS分析 38 4.1.5 FTIR分析 39 4.1.6 UV-Vis光譜分析 40 4.1.7 Zeta Potential分析 41 4.1.8共振角分析與折射值模擬 42 4.1.9表面電漿子波模態模擬 44 4.1.10電化學阻抗分析 45 4.2生物實驗 47 4.2.1流速實驗 47 4.2.2材料與胜肽親和反應比較實驗 48 4.2.3重組蛋白混合干擾物實驗 49 4.2.4分析不同晶片對於重組蛋白與胜肽反應實驗 50 4.2.5 GO-NH2臨床樣本檢測 51 4.2.6臨床樣本檢測與ELISA濃度比較 53 第五章 結論 54 5.1結論 54 5.2未來展望 55 參考文獻 56

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, and S. V. Dubonos, et al., “Electric Field Effect in Atomically Thin Carbon Films,” Science, 2004, 306, 666-669.
    [2] Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, “Graphene Oxide Deposited Microfiber Knot Resonator for Gas Sensing,” ACS Appl. Mater. Interfaces, 2015, 7, 21727–21734.
    [3] W.-Q. Chen, Q.-T. Li, P.-H. Li, Q.-Y. Zhang, Z.-S. Xu, P.-K. Chu, X.-B. Wang, and C.-F. Yi, “In Situ Random Co-polycondensation for Preparation of Reduced Graphene Oxide/Polyimide Nanocomposites with Amino-modified and Chemically Reduced Graphene Oxide,” J. Mater. Sci., 2015, 11, 3860–3874.
    [4] S. Cho, J. S. Lee, and J. Jang, “Poly(vinylidene fluoride)/NH2‑Treated Graphene Nanodot/Reduced Graphene Oxide Nanocomposites with Enhanced Dielectric Performance for Ultrahigh Energy Density Capacitor,” ACS Appl. Mater. Interfaces, 2015, 7, 9668–9681.
    [5] W. Hou, B. Tang, L. Lu, J. Sun, J. Wang, C. Qin, and L, Dai, ” Preparation and Physico-mechanical Properties of Amine-functionalized Graphene/Polyamide 6 Nanocomposite Fiber as a High Performance Material,” RSC Adv., 2014, 4, 4848.
    [6] L. Lai, L. Chen, D. Zhan, L. Sun, J. Liu, S. H. Lim, C. K. Poh, Z. Shen, and J. Lin, “One-step Synthesis of NH2-graphene from In Situ Graphene-oxide Reduction and Its Improved Electrochemical Properties,” Carbon, 2011, 49, 3250-3257.

    [7] N.-F. Chiu, T.-Y. Huang, “Sensitivity and Kinetic Analysis of Graphene Oxide-based Surface Plasmon Resonance Biosensors,” Sens. actuators. B Chem., 197, 2014, 35-42.
    [8] N.-F. Chiu, T.-Y. Huang, H.-C. Lai, and K.-C. Liu, “Graphene Oxide-based SPR Biosensor Chip for Immunoassay Applications,” Nanoscale res. lett., 9, 2014, 445.
    [9] N.-F. Chiu, S.-Y. Fan, C.-D. Yang, and T.-Y. Huang, “Carboxyl-functionalized Graphene Oxide Composites as SPR Biosensors with Enhanced Sensitivity for Immunoaffinity Detection,” Biosens. Bioelectron., 2016, 6, 73.
    [10] N.-F. Chiu, C.-T. Kuo, T.-L. Lin, C.-C. Chang, C.-Y. Chen, “Ultra-high Sensitivity of the Non-immunological Affinity of Graphene Oxide-peptide-based Surface Plasmon Resonance Biosensors to Detect Human Chorionic Gonadotropin,” Biosens. Bioelectron., 2017, 94, 351-357.
    [11] S. K. Singh, M. K. Singh, P. P. Kulkarni, V. K. Sonkar, J. J. A. Grácio, and D. Dash, “Amine-Modified Graphene: Thrombo-Protective Safer Alternative to Graphene Oxide for Biomedical Applications,” ACS NANO, 2012, 6, 2731-2740.
    [12] M. Xu, J. Zhu, F. Wang, Y, Xiong, Y. Wu, Q. Wang, J. Weng, Z. Zhang, W. Chen, and S. Liu, “Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation,” ACS NANO, 2016, 10, 3267-3281.

    [13] W. Guan, Z. Li, H. Zhang, H. Hong, N. Rebeyev, Y. Ye, and Y. Ma, “Amine Modified Graphene as Reversed-dispersive Solid Phase Extraction Materials Combined with Liquid Chromatography–tandem Mass Spectrometry for Pesticide Multi-residue Analysis in Oil Crops,” J. Chromatogr. A, 2013, 1286, 1-8.
    [14] J. Homola, S. S. Yee, and G. Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sens. Actuators B Chem., 1999, 54, 3–15.
    [15] J. R. Brigati, and V. A. Petrenko, “Thermostability of Landscape Phage Probes,” Anal. Bioanal. Chem., 2005, 382, 1346–1350.
    [16] M. Piliarik, M. Bocková, and J. Homola, “Surface Plasmon Resonance Biosensor for Parallelized Detection of Protein Biomarkers in Diluted Blood Plasma,” Biosens. Bioelectron., 2010, 26, 1656-1661.
    [17] R. W. Wood, “On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,” Proc. Phys. Soc. London, 1902, 18, 269-275.
    [18] D. Pines, and D. Bohm, “A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions,” Phys. Rev., 1952, 85, 338.
    [19] A. Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Z. Phys., 1968, 216, 398-410.
    [20] E. Kretschmann, “Die Bestimmung icher Konstanten von Metallen Durch Anregung von Oberflächenplasmaschwingungen,” Z. Phys., 1971, 241, 313-324.
    [21] B. Liedberg, C. Nylander, and I. Lundström, “Surface Plasmons Resonance for Gas Detection and Biosensing,” Sens. Actuators, 1983, 4, 299-304.

    [22] L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly Sensitive Graphene Biosensors Based on Surface Plasmon Resonance,” Opt. Express, 2010, 18, 14395-14400.
    [23] H. Gao, J.-C. Yang, J. Y. Lin, A. D. Stuparu, M. H. Lee, M. Mrksich, and T. W. Odom, “Using the Angle-dependent Resonances of Molded Plasmonic Crystals to Improve the Sensitivities of Biosensors,” Nano Lett., 2010, 10, 2549-2554.
    [24] A. J. A. El-Haija, “Effective Medium Approximation for the Effective Optical Constants of a Bilayer and a Multilayer Structure Based on the Characteristic Matrix Technique,” j. Appl. Phys., 2003, 93, 2590.
    [25] 楊成都, “探討電化學表面電漿技術於即時監測與調控氧化石墨烯能隙之研究,” 國立臺灣師範大學光電科技研究所碩士論文, 2016.
    [26] S. Lin, S.-Y. Lee, Adam, C.-C. Lin, C.-K. Lee, “Determination of Binding Constant and Stoichiometry for Antibody-Antigen Interaction with Surface Plasmon Resonance,” Curr. Proteomics, 2006, 3, 271-282.
    [27] P. Zanello, "Inorganic Electrochemistry: Theory, Practice and Application" The Royal Society of Chemistry 2003.
    [28] S. Wang, S. Boussaad, S. Wong, and N. J. Tao, “High-Sensitivity Stark Spectroscopy Obtained by Surface Plasmon Resonance Measurement,” Anal. Chem., 72, 2000, 4003-4008.
    [29] B. C. Brodie, “On the Atomic Weight of Graphite,” Phil. Trans. R. Soc. Lond., 1859, 149, 249-259.
    [30] W. S. Hummers, and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc., 1958, 80, 1339.

    [31] K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene Oxide as a Chemically Tunable Platform for Optical Applications,” NAT. CHEM., 2010, 2, 1015-1024.
    [32] O. Akhavan, “The Effect of Heat Treatment on Formation of Ggraphene Thin Films from Graphene Oxide Nanosheets,” Carbon, 2010, 48, 509-519.
    [33] D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The Chemistry of Graphene Oxide,” Chem. Soc. Rev., 2010, 39, 228-240.
    [34] G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I-S. Chen, C.-W. Chen, and M. Chhowalla, “Blue Photoluminescence from Chemically Derived Graphene Oxide,” Adv. Mater., 2010, 22, 505-509.
    [35] M. Bruna, and S. Borini, “Optical Constants of Graphene Layers in the Visible Range,” Appl. Phys. Lett., 2009, 94, 031901.
    [36] F. H. L. Koppens, D. E. Chang, and F. J. G. de Abajo, “Graphene Plasmonics: A Platform for Strong Light–Matter Interactions,” Nano Lett., 11, 2011, 3370–3377.
    [37] Q. Bao, and K. P. Loh, “Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices,” ACS Nano, 2012, 6, 3677–3694.
    [38] F. J. G. de Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics, 2014, 1, 135–152.
    [39] M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B, 80, 2009, 245435.
    [40] S. K. Lim, P. Chen, F. L. Lee, S. Moochhala, and B. Liedberg, “Peptide-Assembled Graphene Oxide as a Fluorescent Turn-On Sensor for Lipopolysaccharide (Endotoxin) Detection,” Anal. Chem., 2015, 87, 9408−9412.
    [41] C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu, “Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene,” Anal. Chem., 81, 2009, 2378–2382.
    [42] J. Chen, M. Badioli, P. Alonso-Gonza´lez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic´, A. Centeno, A. Pesquera, P. Godignon, A. Z. E., N. Camara, F. J. G. Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature, 487, 2012, 77-81.
    [43] G. Wu, X. Tang, M. Meyyappan, and K. W. C. Lai, “Chemical Functionalization of Graphene with Aromatic Molecule,” in IEEE 15th International Conference on, Rome, Italy, 27-30 July(2015), pp. 1324-1327.
    [44] S. Pei, J. Zhao, J. Du ,W. Ren, H.-M. Cheng, “Direct reduction of Graphene Oxide Films into Highly Conductive and Flexible Graphene Films by Hydrohalic Acids,” Carbon, 48, 2010, 4466-4474.
    [45] Y. Liu, R. Deng, Z. Wangab, and H. Liu, “Carboxyl-functionalized Graphene Oxide–polyaniline Composite as A Promising Supercapacitor Material,” J. Mater. Chem., 2012, 22, 13619.
    [46] X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-Graphene Oxide for Cellular Imaging and Drug Delivery,” Nano Res., 2008, 1, 203-212.
    [47] M. B. Smith, and J. March, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (New York: Wiley-Interscience, 2007).

    [48] M. A. Velasco-Soto, S. A. Pe´rez-Garcı´a, J. Alvarez-Quintana, Y. Cao, L. Nyborg, and L. Licea-Jime´nez, “Selective Band Gap Manipulation of Graphene Oxide by Its Reduction with Mild Reagents,” Carbon, 2015, 93, 967-973.
    [49] R. W. O’Brien, B. R. Midmore, A. Lamb, and R. J. Hunter, “Electroacoustic Studies of Moderately Concentrated Colloidal Suspensions,” Faraday Discuss. Chem. SOC., 1990, 90, 301-312.
    [50] G. P. Smith, and V. A. Petrenko, “Phage Display,” Chem. Rev., 1997, 97, 391-410.
    [51] J. E. Dover, G. M. Hwang, E. H. Mullen, B. C. Prorok, and S.-J. Suh, “Recent Advances in Peptide Probe-based Biosensors for Detection of Infectious Agents,” J. Microbiol. meth., 2009, 78, 10-19.
    [52] E. R. Goldman, G. P. Anderson, J. L. Liu, J. B. Delehanty, L. J. Sherwood, L. E. Osborn, L. B. Cummins, and A. Hayhurst, “Facile Generation of Heat Stable Antiviral and Antitoxin Single Domain Antibodies from a Semi-synthetic Llama Library,” Anal. Chem., 2006, 78, 8245–8255.
    [53] S. D. Techane, L. J. Gamble, and D. G. Castner, “Multitechnique Characterization of Self-Assembled Carboxylic Acid-Terminated Alkanethiol Monolayers on Nanoparticle and Flat Gold Surfaces,” J Phys. Chem. C, 115, 2011, 9432–9441.
    [54] http://www.sigmaaldrich.com/catalog/product/aldrich/675075
    [55] N.-F. Chiu, W.-C. Lee, T.-S. Jiang, “Constructing a Novel Asymmetric Dielectric Structure Toward the Realization of High-Performance Surface Plasmon Resonance Biosensors,” IEEE Sens. J., 13, 2013, 3483-3489.

    無法下載圖示 本全文未授權公開
    QR CODE