研究生: |
張嘉君 Chang, Chia-Chun |
---|---|
論文名稱: |
群聚暗能量之球坍縮模型 Spherical Collapse Models with Clustered Dark Energy |
指導教授: |
李沃龍
Lee, Wo-Lung |
學位類別: |
博士 Doctor |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 球坍縮模型 、暗能量 、星系團 、結構形成 、群聚 、密集區 |
英文關鍵詞: | spherical collapse model, dark energy, clusters, structure formation, clustering, overdense region |
DOI URL: | http://doi.org/10.6345/DIS.NTNU.DP.001.2019.B04 |
論文種類: | 學術論文 |
相關次數: | 點閱:154 下載:32 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由球坍縮模型分析暗能量在星系團結構形成之群聚效應。對於密集區內完全群聚之暗能量,我們將此區塊視為一孤立系統,且系統內物質與暗能量之總能量守恆。在此理論下,我們引入參數 r 代表暗能量的群聚程度,其定義為轉向時暗能量與物質之非線性密度差之比值,因此得以決定球坍縮的過程,以及利用均功原理求得最終穩定態時的非線性密度比 ∆ vir 。同時我們援引近期的觀測數據推算現今之 ∆ vir 並歸納出在 w < −0.9 的暗能量模型下,r 的範圍於 0.5 < r < 0.8 之間為一個標準差(1σ)。另外,我們亦利用線性微擾理論處理早期暗能量擾動的演化,並計算相關物理量,且將兩種分析模式加以比較。儘管此兩種方式所得的結果是一致的,我們所提出的參數化方式卻更加直接簡便,且毋需考慮初始的暗能量擾動及其早期演化。
We use the spherical collapse model to investigate the clustering effect of dark energy (DE) in the structure formation of galaxy clusters. For the fully clustered DE, we treat the overdense region as an isolated system and the total energy of matter and DE conserves inside the spherical region. Under this circumstance, we introduce a parameter r to characterize the degree of DE clustering, defined by the nonlinear density contrast ratio of DE to matter at the turnaround epoch, and thus we are able to determine the process of the spherical collapse and obtain the virialized nonlinear overdensity ∆ vir by the virial theorem. The current observational data on galaxy clusters suggests 0.5 < r < 0.8 for the clustered DE with w < −0.9 at 1σ level. In addition, we utilize the linear perturbation theory to deal with the evolution of DE perturbation at the early time and calculate the related physical quantities. We compare the two methods and find both results consistent with each other while our method introducing a new parameter is simpler and more straightforward without considering the initial DE perturbation and its evolution at the early time.
[1] See, e.g., L. Wang, R. R. Caldwell, J. P. Ostriker, P. J. Steinhardt, Astrophys. J. 530 (2000) 17.
[2] J. E. Gunn, J. R. Gott, On the Infall of Matter Into Clusters of Galaxies and Some Effects on Their Evolution, Astrophys. J. 176 (1972) 1.
[3] S. Lee, K. -W. Ng, Spherical collapse model with non-clustering dark energy, J. Cosmol. Astropart. Phys. 10 (2010) 028 [arXiv:astro-ph/0910.0126v2].
[4] F. Pace, J. -C. Waizmann, M. Bartelmann, Spherical collapse model in dark-energy cosmologies, Mon. Not. R. Astron. Soc. 406 (2010) 1865 [arXiv:astro-ph/1005.0233v1].
[5] C. Horellou, J. Berge, Dark energy and the evolution of spherical overdensities, Mon. Not. R. Astron. Soc. 360 (2005) 1393 [arXiv:astro-ph/0504465].
[6] M. Bartelmann, M. Doran, C. Wetterich, Non-linear structure formation in cosmologies with early dark energy, Astron. Astrophys.454 (2006) 27 [arXiv:astro-ph/0507257].
[7] S. Meyer, F. Pace, M. Bartelmann, Relativistic virialization in the Spherical Collapse model for Einstein-de Sitter and ΛCDM cosmologies, Phys. Rev. D 86 (2012) 103002 [arXiv:1206.0618].
[8] W. J. Percival, Cosmological structure formation in a homogeneous dark energy background, Astron. Astrophys. 443 (2005) 819 [arXiv:astro-ph/0508156].
[9] P. Wang, Virialization in dark energy Cosmology, Astrophys. J. 640 (2006) 18 [arXiv:astro-ph/0507195].
[10] T. Naderi, M. Malekjani, Spherical collapse and the holographic dark energy model, [arXiv:1311.1102 [gr-qc]].
[11] P. Creminelli, G. D’Amico, J. Noreña, L. Senatore, F. Vernizzi, Spherical Collapse in quintessence models with zero speed of sound, J. Cosmol. Astropart. Phys. 03 (2010) 027
[arXiv:astro-ph/0911.2701v2].
[12] T. Basse, O. E. Bjæld, Y. Y. Y. Wong, Spherical collapse of dark energy with an arbitrary sound speed, J. Cosmol. Astropart. Phys. 10 (2011) 038 [arXiv:astro-ph/1009.0010v3].
[13] S. Basilakos, N. Voglis, Virialization of cosmological structures in models with time-varying equations of state, Mon. Not. R. Astron. Soc. 374 (2007) 269 [arXiv:astro-ph/0610184].
[14] R. C. Batista, F. Pace, Structure formation in inhomogeneous Early Dark Energy models, J. Cosmol. Astropart. Phys. 06 (2013) 044 [arXiv:1303.0414].
[15] N. J. Nunes, D. F. Mota, Structure formation in inhomogeneous dark energy models, Mon. Not. R. Astron. Soc. 368 (2006) 751 [arXiv:astro-ph/0409481].
[16] L. R. Abramo, R. C. Batista, L. Liberato, R. Rosenfeld, Structure formation in the presence of dark energy perturbations, J. Cosmol. Astropart. Phys. 11 (2007) 012 [arXiv:0707.2882].
[17] D. F. Mota, C. van de Bruck, On the spherical collapse model in dark energy cosmologies, Astron. Astrophys. 421 (2004) 71 [arXiv:astro-ph/0401504].
[18] G. Huey, L. Wang, R. Dave, R. R. Caldwell, P. J. Steinhardt, Phys. Rev. D 59 (1999) 063005; M. Doran, M. Lilley, Mon. Not. R. Astron. Soc. 330 (2001) 965; R. Bean, S. H. Hansen, A. Melchiorri, Phys. Rev. D 64 (2001) 103508; W. Lee, K.-W. Ng, Phys. Rev. D 67 (2003) 107302.
[19] I. Maor, O. Lahav, On virialization with dark energy, J. Cosmol. Astropart. Phys. 07 (2005) 003 [arXiv:astro-ph/0505308v2].
[20] S. Basilakos, M. Plionis, J. Sola, Spherical collapse model in time varying vacuum cosmologies, Phys. Rev. D 82 (2010) 083512 [arXiv:1005.5592v2 [astro-ph.CO]].
[21]T. Basse, O. E. Bjæld, S. Hannestad and Y. Y. Y. Wong, Confronting the sound speed of DE with future cluster surveys, [arXiv:astro-ph/1205.0548v1].
[22] J.A.S. Lima, V. Zanchin, R. Brandenberger, On the Newtonian cosmology equations with pressure, Mon. Not. Roy. Astron. Soc. 291 (1997) L1 [arXiv:astro-ph/9612166].
[23] WMAP collaboration, E. Komatsu et al., Five-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547].
[24] A. C. Crook, J. P. Huchra, N. Martimbeau, K. L. Masters, T. Jarrett, L. M. Macri, Groups of Galaxies in the Two Micron All Sky Redshift Survey, Astrophys. J. 655 (2007) 790 [arXiv:0610732 [astro-ph.CO]].
[25] D. W. Hogg, D. J. Eisenstein, M. R. Blanton, N. A. Bahcall, J. Brinkmann, J. E. Gunn, D. P. Schneider, Cosmic homogeneity demonstrated with luminous red galaxies, Astrophys.J. 624 (2005) 54-58 [arXiv:astro-ph/0411197].
[26] S. Nadathur, Seeing patterns in noise: gigaparsec-scale ‘structures’ that do not violate homogeneity, Mon. Not. Roy. Astr. Soc. 434 (2013) 398 [arXiv:1306.1700v2].
[27] The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration, The MASTER Collaboration, A gravitational-wave standard siren measurement of the Hubble constant, Nature. Advance Online Publication (2017) [doi:10.1038/nature24471].
[28] Planck collaboration, P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589].
[29] C. van de Bruck and D.F. Mota, DE and Non-linear Perturbations, [arXiv:astro-ph/0501276].
[30] R. Caimmi, Virialization of matter overdensities within DE subsystems: special cases, NewAstron 12 (2007) 327
[arXiv:gr-qc/0608030].
[31] S. Engineer, N. Kanekar, and T. Padmanabhan Nonlinear density evolution from an improved spherical collapse model, MNRAS 314 (2000) 279, [arXiv:astro-ph/9812452].
[32] I. Maor, Spherical collapse with DE, Int. J. Theor. Phys. 46 (2007) 2274, [arXiv:astro-ph/0602441].
[33] L. R. Abramo, R. C. Batista, L. Liberato and R. Rosenfeld, Physical approximations for the nonlinear evolution of perturbations in DE scenarios, PRD 79 (2009) 023516, [arXiv:0806.3461 [astro-ph]].
[34] D. J. Shaw and D. F. Mota, An Improved Semi-Analytical Spherical Collapse Model for Non-linear Density Evolution, Astrophys. J. Suppl. 174 (2008) 277, [arXiv:0708.0868 [astro-ph]].
[35] S. Basilakos, J. C. B. Sanchez and L. Perivolaropoulos, The spherical collapse model and cluster formation beyond the Λ cosmology: Indications for a clustered DE?, PRD 80 (2009) 043530, [arXiv:0908.1333 [astro-ph.CO]].
[36] B. Ryden, INTRODUCTION TO COSMOLOGY, Addison Wesley
(2002).
[37] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, Fourth Edition: Volume 2 (Course of Theoretical Physics Series), 4th Edition, Elsevier (2007).