研究生: |
鄭璋駿 Jeng, Jang-Jiunn |
---|---|
論文名稱: |
動態光散射在氣體對亞微米尺度膠體分散體穩定性的影響的研究 A Dynamic Light Scattering Study Of Gas Effect On Stability Of Sub-micron Colloidal dispersions |
指導教授: |
陳志強
Chen, Chun-Chung 黃仲仁 Huang, Jung-Ren |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 動態光散射 、奈米碳管 |
英文關鍵詞: | dynamic light scattering, carbon nanotube |
論文種類: | 學術論文 |
相關次數: | 點閱:207 下載:12 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究氣體對膠體分散體問定性的影響。分別使用油(dodecane and squalane)和多層奈米碳管作為分散向,使其分散在水或是去氣體水中,樣品中不加入界面活性劑。利用動態光散射溶液中的油滴或是碳管團塊的大小進行量測,以觀察膠體溶液的穩定度。我們架設了一台動態光散射儀,並使用直徑38nm、500nm、1μm的聚苯乙烯小球進行校正。從指數函數與累積量展開擬合可以得到與樣品相符合的粒徑大小。但CONTIN的分析結果,無法確定可以得到愈樣品相符合的粒徑分布。在使用油進行的無界面活性劑乳膠溶液的實驗中,我們發現與水相比在去起體水中,油可以較容易的形成很小的油滴並可以較穩定的分散在水中,並在完成的乳膠溶液中加入氣體,對樣品的穩定性影響不大。在使用多層奈米碳管的實驗中,我們發現使用去起體水可以做出至少能穩定存在半個月的奈米碳管膠體分散體;而若是使奈米碳管膠體分散體與空氣劇烈混合,則會有明顯的聚合、沉澱現象。
We study effect of gas presence on the stability of colloidal dispersions by using two kinds of colloidal particles, surfactant-free oil droplets and Multi-Walled Carbon Nanotubes (MWNTs) dispersed in degassed or regular deionized (DI) water. Dodecane and squalane are used in surfactant-free oil-in-water emulsion. The technique of dynamic light scattering (DLS) is employed to measure the size evolution of oil droplets and MWNT aggregates. We constructed a DLS system and calibrated it with polystyrene spheres having diameters 38nm, 500nm, and 1000nm. In the calibration, we fit the autocorrelation functions with the exponential decay, the cumulant expansion, and a widely used program CONTIN. The exponential decay and the cumulant expansion yield reasonable particle sizes but CONTIN does not give consistent results. For surfactant-free oil-in-water emulsions, we find that the oil droplets dispersed in degassed DI water are more stable than those in regular DI water. Once the emulsions are made, mixing them with N2 gas does not significantly alter the droplet stability. For MWNT suspensions, samples made with degassed water can be stable at least for half a month. However, violent shaking in presence of air or injection with air leads to visible aggregation in short time.
[1] Jones, R. A. (2002). Soft condensed matter (Vol. 6). Oxford University Press.
[2] Israelachvili, J. N. (2011). Intermolecular and surface forces: revised third edition. Academic press.
[3] Pashley, R. M. (2003). Effect of degassing on the formation and stability of surfactant-free emulsions and fine teflon dispersions. The Journal of Physical Chemistry B, 107(7), 1714-1720.
[4] Pashley, R. M., Francis, M. J., & Rzechowicz, M. (2008). The hydrophobicity of non-aqueous liquids and their dispersion in water under degassed conditions.Current Opinion in Colloid & Interface Science, 13(4), 236-244.
[5] Bahr, J. L., Mickelson, E. T., Bronikowski, M. J., Smalley, R. E., & Tour, J. M. (2001). Dissolution of small diameter single-wall carbon nanotubes in organic solvents?. Chemical Communications, (2), 193-194.
[6] Berne, B. J., & Pecora, R. (2000). Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Corporation.
[7] Clark, N. A., Lunacek, J. H., & Benedek, G. B. (1970). A study of Brownian motion using light scattering. Am. J. Phys, 38(5), 575-585.
[8] Frisken, B. J. (2001). Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Applied Optics, 40(24), 4087-4091.
[9] Provencher, S. W. (1982). A constrained regularization method for inverting data represented by linear algebraic or integral equations. Computer Physics Communications, 27(3), 213-227.
[10] Provencher, S. W. (1982). CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Computer Physics Communications, 27(3), 229-242.