簡易檢索 / 詳目顯示

研究生: 王姸方
Wang, Yen-Fang
論文名稱: 探討體外與體內lunasin處理對免疫細胞與C57BL/6肥胖小鼠免疫反應之影響
The effects of lunasin on immune responses in cell models and high-fat diet-induced obese C57BL/6 mice
指導教授: 謝佳倩
Hsieh, Chia-Chien
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 84
中文關鍵詞: 肥胖lunasin免疫調節T細胞細胞激素
英文關鍵詞: obesity, lunasin, immune regulation, T cell, cytokine
DOI URL: http://doi.org/10.6345/NTNU201900952
論文種類: 學術論文
相關次數: 點閱:235下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

流行病學調查顯示,全球肥胖盛行率依然居高不下,而在肥胖過程中,脂肪組織會有免疫細胞浸潤,並伴隨促發炎性細胞激素的分泌,導致生理處於慢性低度發炎狀態,進而造成許多疾病發展,如:代謝症候群、第二型糖尿病、心血管疾病與癌症等。Lunasin為一種子胜肽,存在於許多穀類中,由43個胺基酸組成,目前研究證實lunasin具有抗腫瘤、抗氧化、抗發炎和免疫調節等功能。本實驗目的為探討肥胖狀態下,lunasin的免疫調節效果。體外實驗的部分,在細胞培養時添加leptin或脂肪細胞培養液 (Adipocyte condition medium) 來模擬肥胖微環境,結果顯示在肥胖環境下,lunasin處理能夠促進EL-4 T細胞增殖,增加IL-2和IL-10分泌量,並降低IL-4分泌;而在肥胖因子下,lunasin處理不影響RAW264.7巨噬細胞胞飲及吞噬活性。體內實驗的部分,將小鼠分為五組,分別為低脂 (LF組)、高脂 (HF組)、腹腔注射lunasin 4 or 20 mg/kg體重 (HF-LL及HF-HL組)以及飲食中添加富含lunasin的天然大豆蛋白萃取物 (HF-DL組)(每公斤飼料含有107 mg lunasin)。結果顯示,HF組相較於LF組,小鼠體重、內臟脂肪及脾臟重量顯著較高,而相較於HF組,lunasin處理對體重及脂肪生成沒有影響,但lunasin處理顯著降低脾臟重量,雖然脾臟細胞數目相對減少,然而在Con A刺激下,脾臟細胞的增殖率卻顯著提升。HF組相較於LF組,在LPS刺激下,腹腔巨噬細胞的TNF-α分泌有較高的趨勢,脾臟細胞的IL-6及PGE2分泌則顯著較高,IL-4分泌顯著較低。而腹腔注射lunasin組小鼠脾臟細胞在LPS刺激下,其IL-6與TNF-α分泌有降低的趨勢;而在Con A刺激下,顯著增加IL-2和IL-4分泌量,且有降低IL-1β的趨勢。綜合上述,lunasin具有緩解肥胖造成脾臟腫大的效果,並改善由肥胖造成的淋巴細胞增殖能力降低,且能夠抑制肥胖造成促發炎細胞激素的分泌,並影響T細胞細胞激素的分泌。總結上述,顯示lunasin在肥胖環境下,具有調控免疫細胞生長與細胞激素分泌等免疫調節的作用。其他免疫調節的功能評估,有待後續進一步的探討。

The prevalence of obesity is increasing since 1980s, and obesity becomes a worldwide healthy issue. In adiposity, immune cells infiltrate into adipose tissue and produce pro-inflammatary cytokines caused chronic inflammation. Obesity is associated with the development of metabolic syndrome, type 2 diabetes mellitus, cardiovascular diseases, cancer etc. Lunasin is a seed peptide found in soybean and other seeds. Lunasin consists of 43 amino acid and has been reported multiple biofunctions such as anti-tumor, anti-oxidation, and anti-inflammation effects. However, there is still few information of lunasin affects on metabolic disease. The aim of this study is to explore the immunomodulation of lunasin in obese models in vitro and in vivo. In vitro, the result has shown that lunasin increased EL-4 T cell proliferation, and IL-2 and IL-10 productions induced by phorbol myristate acetate and ionomycin in T cells under obese models of recombinant mouse leptin or adipocyte condition medium (Ad-CM) to mimic the physiological conditions of obesity. However, lunasin did not affect pinocytosis and phagocytosis activity of RAW264.7 cells. In vivo, C57BL/6 mice were divided into five groups: low-fat diet (LF), high-fat diet (HF), intraperitoneal injection with lunasin 4 or 20 mg/kg body weight/day (HF-LL and HF-HL), and lunsin-enriched soy extract in diet (HF-DL) (107 mg lunasin/kg diet) for 8 weeks. The body weight, and the weight of white adipose tissue and spleen in mice of HF group were higher than those in LF group. In contrast, the size of spleen oflunasin groups were smaller than that in HF group. The proliferation of splenocytes of HF-LL group by concanavalin A (Con A) stimulation was higher compared to the HF group. Moreover, lunasin inhibited secretions of IL-6 and TNF-α, and promoted productions of IL-2 and IL-4 in splenocytes by mitogen stimulation. These results suggested that lunasin regulates T cells proliferation and cytokines production in obese models both in vitro and in vivo. Further studies need to investigate and clarify about the mechanisms of action of lunasin on immunomodulation.

第一章 文獻探討 1 第一節 免疫系統 1 一、先天性免疫反應 1 二、後天性免疫反應 2 三、發炎反應 3 第二節 肥胖 4 一、流行病學調查 4 二、肥胖的生理 4 三、肥胖與代謝性疾病 5 四、肥胖與免疫 6 1. 肥胖相關免疫反應 6 2. 脂肪激素 9 第三節 天然食物成分對免疫系統之調節 10 一、植化素 10 二、生物活性蛋白及胜肽 11 1. 蛋與海鮮肉類 11 2. 奶類 11 3. 穀類及種子 12 第四節 Lunasin 13 一、簡介 13 二、消化吸收 13 三、生理功能 14 1. 抗腫瘤 14 2. 抗氧化 15 3. 抗發炎、免疫調節 16 4. 心血管保護作用 17 5. 其他功效 18 第二章 研究動機與目的 19 第一節 動機與目的 19 第二節 研究架構 20 第三章 實驗材料與方法 21 第一節 實驗材料 21 一、藥品來源 21 1. 合成lunasin 21 2. 天然萃取lunasin 21 二、細胞來源 21 三、動物來源與飼料配方 21 1. 動物來源 21 2. 動物飼料配方 22 四、實驗儀器設備 23 五、拋棄式無菌耗材 24 第二節 實驗方法 25 一、探討lunasin處理在肥胖微環境下對EL-4 T細胞之影響 25 1. EL-4 T細胞株培養 25 2. 細胞增殖率測定 26 3. 細胞激素測定--酵素連結免疫吸附分析 (ELISA) 27 二、Lunasin處理在肥胖微環境下對RAW264.7巨噬細胞之影響 28 1. RAW264.7細胞株培養 28 2. 胞飲活性試驗 (中性紅試驗) 28 3. 吞噬活性試驗 29 三、富含Lunasin飲食對餵食高油飲食之肥胖小鼠其免疫調節之影響 30 1. 動物犧牲與血液樣本收集 31 2. 腹腔細胞之取得與培養 31 3. 脾臟細胞之取得與培養 32 4. 腸系膜淋巴結與皮耶氏體之取得 32 5. 免疫細胞增殖率分析 33 6. 細胞激素測定 34 第三節 統計分析 36 第四章 實驗結果 37 第一節 探討lunasin處理在肥胖微環境下對EL-4 T細胞之影響 37 一、建立體外肥胖微環境對EL-4細胞生長的影響 37 二、Lunasin處理對肥胖模式下EL-4 T細胞其生長的影響 39 三、Lunasin處理對肥胖模式下EL-4 T細胞之細胞激素分泌量的影響 40 第二節 Lunasin處理在肥胖微環境下對RAW264.7巨噬細胞之影響 43 一、Lunasin處理在肥胖微環境下對RAW264.7巨噬細胞胞飲活性的影響 43 二、Lunasin處理在肥胖微環境下對RAW264.7巨噬細胞吞噬活性的影響 44 第三節 富含Lunasin飲食對餵食高油飲食之肥胖小鼠其免疫調節之影響 46 一、富含Lunasin飲食對餵食高油飲食之肥胖小鼠體重與攝食量的影響 46 二、富含lunasin飲食對餵食高油飲食之肥胖小鼠組織器官重量的影響 48 三、Lunasin處理對小鼠血清中脂肪激素含量的影響 50 四、富含lunasin飲食對餵食高油飲食之肥胖小鼠免疫細胞數目的影響 52 五、Lunasin處理對小鼠脾臟細胞增生的影響 53 六、Lunasin處理對小鼠腹腔巨噬細胞之細胞激素分泌量的影響 54 七、Lunasin處理對小鼠脾臟細胞之細胞激素分泌量的影響 55 八、Lunasin處理對小鼠腹腔巨噬細胞及脾臟細胞前列腺素E2分泌的影響 58 第五章 討論 59 第一節 Lunasin處理在肥胖微環境下對EL-4 T細胞之影響 59 第二節 Lunasin處理在肥胖微環境下對RAW264.7巨噬細胞之影響 60 第三節 富含lunasin飲食對於餵食高油飲食之肥胖小鼠其免疫調節之影響 61 一、餵食高脂及富含lunasin飲食對小鼠體重、組織器官重量與免疫細胞的影響 61 二、Lunasin處理對肥胖小鼠初代免疫細胞生長與細胞激素分泌的影響 61 三、Lunasin處理對小鼠血清中脂肪激素含量的影響 64 第四節 綜合討論與未來研究方向 65 第六章 結論 66 第七章 參考文獻 67

周美佳(2016)。探討種子胜肽Lunasin對於肥胖引起的發炎模式之免疫調節作用。國立台灣師範大學,台北市。
彭詩涵(2018)。種子胜肽Lunasin對肥胖因子影響雌激素依賴型與非依賴型人類乳癌細胞生長與移行作用之探討。國立台灣師範大學,台北市。
黃渝珊(2015)。探討Lunasin及Aspirin的處理對脂肪細胞與乳癌細胞發炎與生長之影響。國立台灣師範大學,台北市。
衛生福利部國民健康署.我國過重及肥胖盛行率. Retrieved from https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=825&pid=4549 [Accessed 2018.10.14]
衛生福利部國民健康署健康九九網站.BMI標準. Retrieved from http://health99.hpa.gov.tw/OnlinkHealth/Onlink_BMI.aspx [Accessed 2018.12.16]
衛福部 健康食品之免疫調節功能評估方法 (1999) Retrieved from https://www.fda.gov.tw/tc/newsContent.aspx?cid=3&id=19958 [Accessed 2018.09.19]
Abbas, A. K., & Lichtman, A. H. (2009). Basic Immunology: Functions and Disorders of the Immune System (3rd ed.). Philadelphia, PA : Elsevier
Abbas, A. K., Murphy, K. M., & Sher, A. (1996). Functional diversity of helper T lymphocytes. Nature, 383(6603), 787.
Agrawal, S., Gollapudi, S., Su, H., & Gupta, S. (2011). Leptin activates human B cells to secrete TNF-α, IL-6, and IL-10 via JAK2/STAT3 and p38MAPK/ERK1/2 signaling pathway. Journal of clinical immunology, 31(3), 472-478.
Ajuwon, K. M., & Spurlock, M. E. (2005). Adiponectin inhibits LPS-induced NF-κB activation and IL-6 production and increases PPARγ2 expression in adipocytes. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288(5), R1220-R1225.
Alessi, M. C., & Juhan-Vague, I. (2006). PAI-1 and the metabolic syndrome: links, causes, and consequences. Arteriosclerosis, thrombosis, and vascular biology, 26(10), 2200-2207.
Altunkaynak, B. Z., Ozbek, E., & Altunkaynak, M. E. (2007). A stereological and histological analysis of spleen on obese female rats, fed with high fat diet. Saudi medical journal, 28(3), 353-357.
Bachala, D., El-Refai, N., Greenfield, E., Aminoshariae, A., & Mickel, A. (2018). The Effect of Lunasin on Receptor Activator of Nuclear Factor Kappa-B Ligand− mediated Osteoclast Formation from RAW 264.7 Cells. Journal of endodontics, 44(6), 997-999.
Bado, A., Levasseur, S., Attoub, S., Kermorgant, S., Laigneau, J. P., Bortoluzzi, M. N., Moizo, L., Lehy, T., Guerre-Millo, M., Marchand-Brustel, Y. L., & Lewin, M. J. (1998). The stomach is a source of leptin. Nature, 394(6695), 790.
Barati, M., Yousefi, M., Ebrahimi-Mameghani, M., Mohammadi, H., Brazvan, B., Nickho, H., Fouladi, M., & Mohammadi, M. (2017). Oryzatensin-stimulated PBMCs increase cancer progression in-vitro. Iranian Journal of Allergy, Asthma and Immunology, 16(2), 120-126.
Barton, G. M., & Medzhitov, R. (2002). Control of adaptive immune responses by Toll-like receptors. Current opinion in immunology, 14(3), 380-383.
Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. The Journal of clinical investigation, 110(8), 1093-1103.
Bhattacharyya, S., Hossain, D. M. S., Mohanty, S., Sen, G. S., Chattopadhyay, S., Banerjee, S., Chakraborty, J., Das, K., Sarkar, D., Das, T., & Sa, G. (2010). Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. Cellular & molecular immunology, 7(4), 306.
Blackman, M. A., Tigges, M. A., Minie, M. E., & Koshland, M. E. (1986). A model system for peptide hormone action in differentiation: interleukin 2 induces a B lymphoma to transcribe the J chain gene. Cell, 47(4), 609-617.
Bosnjak, B., Stelzmueller, B., Erb, K. J., & Epstein, M. M. (2011). Treatment of allergic asthma: modulation of Th2 cells and their responses. Respiratory research, 12(1), 114.
Brody, E. P. (2000). Biological activities of bovine glycomacropeptide. British Journal of Nutrition, 84(S1), 39-46.
Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature, 414(6865), 813.
Caballero, B. (2007). The global epidemic of obesity: an overview. Epidemiologic reviews, 29(1), 1-5.
Calder, P. C., Ahluwalia, N., Albers, R., Bosco, N., Bourdet-Sicard, R., Haller, D., Holgate, S. T., Jönsson, L. S., Latulippe, M. E., Marcos, A., Moreines, J., M'Rini, C., Müller, M., Pawelec, G., van Neerven, R. J. J., Watzl, B., & Zhao, J. (2013). A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. British Journal of Nutrition, 109(S1), S1-S34.
Calder, P. C., Ahluwalia, N., Brouns, F., Buetler, T., Clement, K., Cunningham, K., Esposito, K., Jönsson, L. S., Kolb, H., Lansink, M., Marcos, A., Margioris, A., Matusheski, N., Nordmann, H., O'Brien, J., Pugliese, G., Rizkalla, S., Schalkwijk, C., Tuomilehto, J., Wärnberg, J., Watzl, B., & Winklhofer-Roob, B. M. (2011). Dietary factors and low-grade inflammation in relation to overweight and obesity. British Journal of Nutrition, 106(S3), S1-S78.
Cam, A., & de Mejia, E. G. (2012). RGD‐peptide lunasin inhibits Akt‐mediated NF‐κB activation in human macrophages through interaction with the αVβ3 integrin. Molecular nutrition & food research, 56(10), 1569-1581.
Campbell, J. D., & Hay-Glass, K. T. (2000). T cell chemokine receptor expression in human Th1-and Th2-associated diseases. ARCHIVUM IMMUNOLOGIAE ET THERAPIAE EXPERIMENTALIS-ENGLISH EDITION-, 48(6), 451-456.
Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., Gibson, G. R., & Delzenne, N. M. (2007). Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50(11), 2374-2383.
Chang, Y. H., Huang, C. N., & Shiau, M. Y. (2012). Association of IL-4 receptor gene polymorphisms with high density lipoprotein cholesterol. Cytokine, 59(2), 309-312.
Chapoval, S., Dasgupta, P., Dorsey, N. J., & Keegan, A. D. (2010). Regulation of the T helper cell type 2 (Th2)/T regulatory cell (Treg) balance by IL‐4 and STAT6. Journal of leukocyte biology, 87(6), 1011-1018.
Chen, A., Mumick, S., Zhang, C., Lamb, J., Dai, H., Weingarth, D., Mudgett, J., Chen, H., MacNeil, D. J., Reitman, M. L., & Qian, S. (2005). Diet induction of monocyte chemoattractant protein‐1 and its impact on obesity. Obesity research, 13(8), 1311-1320.
Cheng, A. S., Cheng, Y. H., & Chang, T. L. (2012). Scopoletin attenuates allergy by inhibiting Th2 cytokines production in EL-4 T cells. Food & function, 3(8), 886-890.
Choe, S. S., Huh, J. Y., Hwang, I. J., Kim, J. I., & Kim, J. B. (2016). Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Frontiers in endocrinology, 7, 30.
Cildir, G., Akıncılar, S. C., & Tergaonkar, V. (2013). Chronic adipose tissue inflammation: all immune cells on the stage. Trends in molecular medicine, 19(8), 487-500.
Collins, S., Martin, T. L., Surwit, R. S., & Robidoux, J. (2004). Genetic vulnerability to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiology & behavior, 81(2), 243-248.
Couper, K. N., Blount, D. G., & Riley, E. M. (2008). IL-10: the master regulator of immunity to infection. The Journal of Immunology, 180(9), 5771-5777.
Crotty, S. (2011). Follicular helper CD4 T cells (Tfh). Annual review of immunology, 29, 621-663.
Crouch, S. P., Slater, K. J., & Fletcher, J. (1992). Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood, 80(1), 235-240.
Cruz-Huerta, E., Fernández-Tomé, S., Arques, M. C., Amigo, L., Recio, I., Clemente, A., & Hernández-Ledesma, B. (2015). The protective role of the Bowman-Birk protease inhibitor in soybean lunasin digestion: the effect of released peptides on colon cancer growth. Food & function, 6(8), 2626-2635.
Dai, G., Zhang, P., Ye, P., Zhang, M., Han, N., Shuai, H., & Tan, S. (2016). The Chemopreventive peptide lunasin inhibits d-galactose-induced experimental cataract in rats. Protein and peptide letters, 23(7), 619-625.
de Lumen, B. O. (2005). Lunasin: a cancer‐preventive soy peptide. Nutrition reviews, 63(1), 16-21.
de Mejia, E. G., & Dia, V. P. (2009). Lunasin and lunasin-like peptides inhibit inflammation through suppression of NF-κB pathway in the macrophage. Peptides, 30(12), 2388-2398.
De Pergola, G., & Pannacciulli, N. (2002). Coagulation and fibrinolysis abnormalities in obesity. Journal of endocrinological investigation, 25(10), 899-904.
De Rosa, V., Procaccini, C., Calì, G., Pirozzi, G., Fontana, S., Zappacosta, S., La Cava, A., & Matarese, G. (2007). A key role of leptin in the control of regulatory T cell proliferation. Immunity, 26(2), 241-255.
Dia, V. P., Frankland-Searby, S., del Hierro, F. L., Garcia, G., & de Mejia, E. G. (2013). Structural property of soybean lunasin and development of a method to quantify lunasin in plasma using an optimized immunoassay protocol. Food chemistry, 138(1), 334-341.
Dia, V. P., Torres, S., de Lumen, B. O., Erdman Jr, J. W., & Gonzalez de Mejia, E. (2009). Presence of lunasin in plasma of men after soy protein consumption. Journal of Agricultural and Food Chemistry, 57(4), 1260-1266.
Dixit, V. D. (2008). Adipose‐immune interactions during obesity and caloric restriction: reciprocal mechanisms regulating immunity and health span. Journal of leukocyte biology, 84(4), 882-892.
Drori, A., Rotnemer-Golinkin, D., Zolotarov, L., & Ilan, Y. (2017). Oral administration of CardioAid and lunasin alleviates liver damage in a high-fat diet nonalcoholic steatohepatitis model. Digestion, 96(2), 110-118.
Esser, N., Legrand-Poels, S., Piette, J., Scheen, A. J., & Paquot, N. (2014). Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes research and clinical practice, 105(2), 141-150.
Fain, J. N., Kanu, A., Bahouth, S. W., Cowan Jr, G. S. M., Hiler, M. L., & Leffler, C. W. (2002). Comparison of PGE2, prostacyclin and leptin release by human adipocytes versus explants of adipose tissue in primary culture. Prostaglandins, leukotrienes and essential fatty acids, 67(6),
Falagas, M. E., & Kompoti, M. (2006). Obesity and infection. The Lancet infectious diseases, 6(7), 438-446.
Farooqi, I. S., Matarese, G., Lord, G. M., Keogh, J. M., Lawrence, E., Agwu, C., Sanna, V., Jebb, S. a., Perna, F., Fontana, S., Lechler, R. I., DePaoli, A. M., & Rahilly1, S. O. (2002).
Fernandez, G., Handwerger, B. S., Yunis, E. J., & Brown, D. M. (1978). Immune response in the mutant diabetic C57BL/Ks-db mouse. J. Clin. Invest, 61, 243-250.
Fernández-Tomé, S., Sanchón, J., Recio, I., & Hernández-Ledesma, B. (2018). Transepithelial transport of lunasin and derived peptides: Inhibitory effects on the gastrointestinal cancer cells viability. Journal of Food Composition and Analysis, 68, 101-110.
Fink, S., Eckert, E., Mitchell, J., Crosby, R., & Pomeroy, C. (1996). T‐lymphocyte subsets in patients with abnormal body weight: Longitudinal studies in anorexia nervosa and obesity. International Journal of Eating Disorders, 20(3), 295-305.
Ford, E. S. (2005). The epidemiology of obesity and asthma. Journal of Allergy and Clinical Immunology, 115(5), 897-909.
Francisco, V., Pérez, T., Pino, J., López, V., Franco, E., Alonso, A., Gonzalez‐Gay, M. A., Mera, A., Lago, F., Gómez, R., & Gualillo, O. (2018). Biomechanics, obesity, and osteoarthritis. The role of adipokines: When the levee breaks. Journal of Orthopaedic Research®, 36(2), 594-604.
Fraulob, J. C., Ogg-Diamantino, R., Fernandes-Santos, C., Aguila, M. B., & Mandarim-de-Lacerda, C. A. (2010). A mouse model of metabolic syndrome: insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. Journal of clinical biochemistry and nutrition, 46(3), 212-223.
Frederich, R. C., Hamann, A., Anderson, S., Löllmann, B., Lowell, B. B., & Flier, J. S. (1995). Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nature medicine, 1(12), 1311.
Friedman, J. M., & Halaas, J. L. (1998). Leptin and the regulation of body weight in mammals. Nature, 395(6704), 763.
Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M., & Shimomura, I. (2017). Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of clinical investigation, 114(12), 1752-1761.
Galvez, A. F. (2010). Methods for using soy peptides to inhibit H3 acetylation, reduce expression of HMG CoA reductase, and increase LDL receptor and Sp1 expression in a mamma. U.S. Patent No. 7,731,995. Washington, DC: U.S. Patent and Trademark Office.
Galvez, A. F. (2012). Abstract: identification of lunasin as the active component in soy protein responsible for reducing LDL cholesterol and risk of cardiovascular disease. Circulation 126:A10693.
Galvez, A. F., & Benito, O. (1999). A soybean cDNA encoding a chromatin-binding peptide inhibits mitosis of mammalian cells. Nature biotechnology, 17(5), 495.
Galvez, A. F., Chen, N., Macasieb, J., & Ben, O. (2001). Chemopreventive property of a soybean peptide (lunasin) that binds to deacetylated histones and inhibits acetylation. Cancer research, 61(20), 7473-7478.
Galvez, A. F., Matel, H., Ivey, J., & Bowles, D. (2013). Lunasin-Enriched Soy Extract (LunaRich X™), in Combination with the Dietary Supplement Reliv Now, Reduces Free Fatty Acid by Increasing Plasma Leptin and Adiponectin Levels in LDL-Receptor Mutant Pigs.
García-Nebot, M. J., Recio, I., & Hernández-Ledesma, B. (2014). Antioxidant activity and protective effects of peptide lunasin against oxidative stress in intestinal Caco-2 cells. Food and chemical toxicology, 65, 155-161.
Giansanti, F., Panella, G., Leboffe, L., & Antonini, G. (2016). Lactoferrin from milk: nutraceutical and pharmacological properties. Pharmaceuticals, 9(4), 61.
Gonzalez de Mejia, E., Vásconez, M., de Lumen, B. O., & Nelson, R. (2004). Lunasin concentration in different soybean genotypes, commercial soy protein, and isoflavone products. Journal of agricultural and food chemistry, 52(19), 5882-5887.
Gordon, S. (2003). Alternative activation of macrophages. Nature reviews immunology, 3(1), 23.
Grazia Roncarolo, M., Gregori, S., Battaglia, M., Bacchetta, R., Fleischhauer, K., & Levings, M. K. (2006). Interleukin‐10‐secreting type 1 regulatory T cells in rodents and humans. Immunological reviews, 212(1), 28-50.
Griffin, T. M., Huebner, J. L., Kraus, V. B., Yan, Z., & Guilak, F. (2012). Induction of osteoarthritis and metabolic inflammation by a very high‐fat diet in mice: effects of short‐term exercise. Arthritis & Rheumatism, 64(2), 443-453.
Grundy, S. M. (2000). Metabolic complications of obesity. Endocrine, 13(2), 155-165.
Grundy, S. M. (2004). Obesity, metabolic syndrome, and cardiovascular disease. The Journal of Clinical Endocrinology & Metabolism, 89(6), 2595-2600.
Gu, L., Wang, Y., Xu, Y., Tian, Q., Lei, G., Zhao, C., Gao, Z., Pan, Q., Zhao, W., Nong, L., & Tan, S. (2017). Lunasin functionally enhances LDL uptake via inhibiting PCSK9 and enhancing LDLR expression in vitro and in vivo. Oncotarget, 8(46), 80826.
Guerra, S., Sherrill, D. L., Bobadilla, A., Martinez, F. D., & Barbee, R. A. (2002). The relation of body mass index to asthma, chronic bronchitis, and emphysema. Chest, 122(4), 1256-1263.
Guo, L. Y., Cai, X. F., Lee, J. J., Kang, S. S., Shin, E. M., Zhou, H. Y., Jung, J. W., & Kim, Y. S. (2008). Comparison of suppressive effects of demethoxycurcumin and bisdemethoxycurcumin on expressions of inflammatory mediators in vitro and in vivo. Archives of Pharmacal Research, 31(4), 490.
Guo, T. L., Chi, R. P., Hernandez, D. M., Auttachoat, W., & Zheng, J. F. (2007). Decreased 7, 12-dimethylbenz [a] anthracene-induced carcinogenesis coincides with the induction of antitumor immunities in adult female B6C3F1 mice pretreated with genistein. Carcinogenesis, 28(12), 2560-2566.
Henney, C. S., Kuribayashi, K., Kern, D. E., & Gillis, S. (1981). Interleukin-2 augments natural killer cell activity. Nature, 291(5813), 335.
Hernández-Ledesma, B., & De Lumen, B. O. (2008). Lunasin: a novel cancer preventive seed peptide. Perspectives in medicinal chemistry, 2, PMC-S372.
Hernández-Ledesma, B., Hsieh, C. C., & Ben, O. (2009). Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochemical and biophysical research communications, 390(3), 803-808.
Hoggard, N., Hunter, L., Duncan, J. S., Williams, L. M., Trayhurn, P., & Mercer, J. G. (1997). Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta. Proceedings of the National Academy of Sciences, 94(20), 11073-11078.
Horiguchi, N., Horiguchi, H., & Suzuki, Y. (2005). Effect of wheat gluten hydrolysate on the immune system in healthy human subjects. Bioscience, biotechnology, and biochemistry, 69(12), 2445-2449.
Hossain, P., Kawar, B., & El Nahas, M. (2009). Obesity and diabetes in the developing world—a growing challenge.
Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444(7121), 860.
Hsieh, C. C., Chou, M. J., & Wang, C. H. (2017). Lunasin attenuates obesity-related inflammation in RAW264. 7 cells and 3T3-L1 adipocytes by inhibiting inflammatory cytokine production. PloS one, 12(2), e0171969.
Hsieh, C. C., Hernández-Ledesma, B., & Ben, O. (2010b). Lunasin, a novel seed peptide, sensitizes human breast cancer MDA-MB-231 cells to aspirin-arrested cell cycle and induced apoptosis. Chemico-biological interactions, 186(2), 127-134.
Hsieh, C. C., Hernández‐Ledesma, B., & de Lumen, B. O. (2010c). Soybean peptide lunasin suppresses in vitro and in vivo 7, 12‐dimethylbenz [a] anthracene‐induced tumorigenesis. Journal of Food Science, 75(9), H311-H316.
Hsieh, C. C., Hernández-Ledesma, B., Jeong, H. J., Park, J. H., & Ben, O. (2010a). Complementary roles in cancer prevention: protease inhibitor makes the cancer preventive peptide lunasin bioavailable. PloS one, 5(1), e8890.
Hsieh, C. C., Wang, Y. F., Lin, P.Y., Peng, S. H., & Chou, M. J. Lunasin regulates immune responses in EL-4 T cells and C57BL/6J mice fed high-fat diet. Manuscript
Huttunen, R., & Syrjänen, J. (2013). Obesity and the risk and outcome of infection. International journal of obesity, 37(3), 333.
Janeway Jr, C. A. (1992). The immune system evolved to discriminate infectious nonself from noninfectious self. Immunology today, 13(1), 11-16.
Jeong, H. J., Jeong, J. B., Kim, D. S., & de Lumen, B. O. (2007b). Inhibition of core histone acetylation by the cancer preventive peptide lunasin. Journal of agricultural and food chemistry, 55(3), 632-637.
Jeong, H. J., Jeong, J. B., Kim, D. S., Park, J. H., Lee, J. B., Kweon, D. H., Chung, G. Y., Seo, E. W., & Ben, O. (2007a). The cancer preventive peptide lunasin from wheat inhibits core histone acetylation. Cancer letters, 255(1), 42-48.
Jeong, H. J., Lam, Y., & de Lumen, B. O. (2002). Barley lunasin suppresses ras-induced colony formation and inhibits core histone acetylation in mammalian cells. Journal of agricultural and food chemistry, 50(21), 5903-5908.
Jeong, H. J., Lee, J. R., Jeong, J. B., Park, J. H., Cheong, Y. K., & de Lumen, B. O. (2009). The cancer preventive seed peptide lunasin from rye is bioavailable and bioactive. Nutrition and cancer, 61(5), 680-686.
Jeong, J. B., Ben, O., & Jeong, H. J. (2010). Lunasin peptide purified from Solanum nigrum L. protects DNA from oxidative damage by suppressing the generation of hydroxyl radical via blocking fenton reaction. Cancer Letters, 293(1), 58-64.
Kaidar-Person, O., Bar-Sela, G., & Person, B. (2011). The two major epidemics of the twenty-first century: obesity and cancer. Obesity surgery, 21(11), 1792-1797.
Kamanaka, M., Kim, S. T., Wan, Y. Y., Sutterwala, F. S., Lara-Tejero, M., Galán, J. E., Harhaj, E., & Flavell, R. A. (2006). Expression of interleukin-10 in intestinal lymphocytes detected by an interleukin-10 reporter knockin tiger mouse. Immunity, 25(6), 941-952.
Kanamoto, Y., Yamashita, Y., Nanba, F., Yoshida, T., Tsuda, T., Fukuda, I., ... & Ashida, H. (2011). A black soybean seed coat extract prevents obesity and glucose intolerance by up-regulating uncoupling proteins and down-regulating inflammatory cytokines in high-fat diet-fed mice. Journal of agricultural and food chemistry, 59(16), 8985-8993.
Kang, K., Reilly, S. M., Karabacak, V., Gangl, M. R., Fitzgerald, K., Hatano, B., & Lee, C. H. (2008). Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell metabolism, 7(6), 485-495.
Karlsson, E. A., & Beck, M. A. (2010). The burden of obesity on infectious disease. Experimental biology and medicine, 235(12), 1412-1424.
Kattoor, A. J., Pothineni, N. V. K., Palagiri, D., & Mehta, J. L. (2017). Oxidative stress in atherosclerosis. Current atherosclerosis reports, 19(11), 42.
Kawanishi, N., Yano, H., Yokogawa, Y., & Suzuki, K. (2010). Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exercise immunology review, 16.
Keane, K. N., Cruzat, V. F., Carlessi, R., de Bittencourt, P. I. H., & Newsholme, P. (2015). Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxidative medicine and cellular longevity, 2015.
Kennedy, M. A. (2010). A brief review of the basics of immunology: the innate and adaptive response. Veterinary Clinics: Small Animal Practice, 40(3), 369-379.
Khan, N., Monagas, M., Urpi-sarda, M., Llorach, R., & Andres-Lacueva, C. (2013). Contribution of Bioactive Foods and Their Emerging Role in Immunomodulation, Inflammation, and Arthritis. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases (pp. 43-65).
Kimura, A., & Kishimoto, T. (2010). IL‐6: regulator of Treg/Th17 balance. European journal of immunology, 40(7), 1830-1835.
Kong, X., Guo, M., Hua, Y., Cao, D., & Zhang, C. (2008). Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresource Technology, 99(18), 8873-8879.
Kopelman, P. G. (2000). Obesity as a medical problem. Nature, 404(6778), 635.
Korn, T., Bettelli, E., Oukka, M., & Kuchroo, V. K. (2009). IL-17 and Th17 Cells. Annual review of immunology, 27, 485-517.
Kubota, N., Terauchi, Y., Yamauchi, T., Kubota, T., Moroi, M., Matsui, J., Eto, K., Yamashita, T., Kamon, J., Satoh, H., Yano, W., Froguel, P., Nagai, R., Kimura, S., Kadowaki, T., & Noda, T. (2002). Disruption of adiponectin causes insulin resistance and neointimal formation. Journal of Biological Chemistry, 277(29), 25863-25866.
Lago, F., Dieguez, C., Gómez-Reino, J., & Gualillo, O. (2007). Adipokines as emerging mediators of immune response and inflammation. Nature Reviews Rheumatology, 3(12), 716.
Lam, Q. L. K., Wang, S., Ko, O. K. H., Kincade, P. W., & Lu, L. (2010). Leptin signaling maintains B-cell homeostasis via induction of Bcl-2 and Cyclin D1. Proceedings of the National Academy of Sciences, 107(31), 13812-13817.
Lam, Y., Galvez, A., & de Lumen, B. O. (2003). Lunasin™ suppresses E1A-mediated transformation of mammalian cells but does not inhibit growth of immortalized and established cancer cell lines. Nutrition and cancer, 47(1), 88-94.
Lamas, O., Marti, A., & Martinez, J. A. (2002). Obesity and immunocompetence. European journal of clinical nutrition, 56(S3), S42.
Larrea, M. D., Liang, J., Da Silva, T., Hong, F., Shao, S. H., Han, K., Dumont, D., & Slingerland, J. M. (2008). Phosphorylation of p27Kip1 regulates assembly and activation of cyclin D1-Cdk4. Molecular and cellular biology, 28(20), 6462-6472.
Laue, T., Wrann, C. D., Hoffmann-Castendiek, B., Pietsch, D., Hübner, L., & Kielstein, H. (2015). Altered NK cell function in obese healthy humans. BMC obesity, 2(1), 1.
Lee, B. C., & Lee, J. (2014). Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(3), 446-462.
Leyva, F., Godsland, I. F., Ghatei, M., Proudler, A. J., Aldis, S., Walton, C., Stephen, B., & Stevenson, J. C. (1998). Hyperleptinemia as a component of a metabolic syndrome of cardiovascular risk. Arteriosclerosis, thrombosis, and vascular biology, 18(6), 928-933.
Liao, W., Lin, J. X., & Leonard, W. J. (2011a). IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Current opinion in immunology, 23(5), 598-604.
Liao, W., Lin, J. X., Wang, L., Li, P., & Leonard, W. J. (2011b). Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nature immunology, 12(6), 551.
Liu, J., Jia, S. H., Kirberger, M., & Chen, N. (2014). Lunasin as a promising health-beneficial peptide. Eur Rev Med Pharmacol Sci, 18(14), 2070-5.
Lord, G. M., Matarese, G., Howard, J. K., Baker, R. J., Bloom, S. R., & Lechler, R. I. (1998). Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature, 394(6696), 897.
Luo, L., & Liu, M. (2016). Adipose tissue in control of metabolism. Journal of Endocrinology, 231(3), R77-R99.
Madsen, E. L., Rissanen, A., Bruun, J. M., Skogstrand, K., Tonstad, S., Hougaard, D. M., & Richelsen, B. (2008). Weight loss larger than 10% is needed for general improvement of levels of circulating adiponectin and markers of inflammation in obese subjects: a 3-year weight loss study. European Journal of Endocrinology, 158(2), 179-187.
Mancuso, P., Gottschalk, A., Phare, S. M., Peters-Golden, M., Lukacs, N. W., & Huffnagle, G. B. (2002). Leptin-deficient mice exhibit impaired host defense in Gram-negative pneumonia. The Journal of Immunology, 168(8), 4018-4024.
Mandal, P., Pratt, B. T., Barnes, M., McMullen, M. R., & Nagy, L. E. (2011). Molecular mechanism for adiponectin-dependent M2 macrophage polarization: link between the metabolic and innate immune activity of full-length adiponectin. Journal of Biological Chemistry, jbc-M110.
Manna, P., & Jain, S. K. (2015). Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metabolic syndrome and related disorders, 13(10), 423-444.
Mantena, S. K., Roy, A. M., & Katiyar, S. K. (2005). Retracted: Epigallocatechin‐3‐Gallate Inhibits Photocarcinogenesis Through Inhibition of Angiogenic Factors and Activation of CD8+ T Cells in Tumors. Photochemistry and photobiology, 81(5), 1174-1179.
Martinez, J. A. (2006). Mitochondrial oxidative stress and inflammation: an slalom to obesity and insulin resistance. Journal of physiology and biochemistry, 62(4), 303-306.
Masotti, A. I., Buckley, N., Champagne, C. P., & Green-Johnson, J. (2011). Immunomodulatory bioactivity of soy and milk ferments on monocyte and macrophage models. Food research international, 44(8), 2475-2481.
Matarese, G., Moschos, S., & Mantzoros, C. S. (2005). Leptin in immunology. The Journal of Immunology, 174(6), 3137-3142.
Mattioli, B., Giordani, L., Quaranta, M. G., & Viora, M. (2009). Leptin exerts an anti‐apoptotic effect on human dendritic cells via the PI3K‐Akt signaling pathway. FEBS letters, 583(7), 1102-1106.
Mattioli, B., Straface, E., Matarrese, P., Quaranta, M. G., Giordani, L., Malorni, W., & Viora, M. (2008). Leptin as an immunological adjuvant: enhanced migratory and CD8+ T cell stimulatory capacity of human dendritic cells exposed to leptin. The FASEB Journal, 22(6), 2012-2022.
Maynard, C. L., & Weaver, C. T. (2008). Diversity in the contribution of interleukin‐10 to T‐cell‐mediated immune regulation. Immunological reviews, 226(1), 219-233.
McConnell, E. J., Devapatla, B., Yaddanapudi, K., & Davis, K. R. (2015). The soybean-derived peptide lunasin inhibits non-small cell lung cancer cell proliferation by suppressing phosphorylation of the retinoblastoma protein. Oncotarget, 6(7), 4649.
Medzhitov, R., & Janeway Jr, C. A. (1997). Innate immunity: impact on the adaptive immune response. Current opinion in immunology, 9(1), 4-9.
Merchant, J. L., & Ding, L. (2017). Hedgehog signaling links chronic inflammation to gastric cancer precursor lesions. Cellular and molecular gastroenterology and hepatology, 3(2), 201-210.
Mishra, S., Harris, T. B., Hsueh, W. C., Hue, T., Leak, T. S., Li, R., Mehta, M., Vaisse, C., & Sahyoun, N. R. (2015). The association of serum leptin with mortality in older adults. PLoS One, 10(10), e0140763.
Möller, N. P., Scholz-Ahrens, K. E., Roos, N., & Schrezenmeir, J. (2008). Bioactive peptides and proteins from foods: indication for health effects. European journal of nutrition, 47(4), 171-182.
Moore, K. W., de Waal Malefyt, R., Coffman, R. L., & O'Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annual review of immunology, 19(1), 683-765.
Morash, B., Li, A., Murphy, P. R., Wilkinson, M., & Ur, E. (1999). Leptin gene expression in the brain and pituitary gland. Endocrinology, 140(12), 5995-5998.
Murano, I., Barbatelli, G., Parisani, V., Latini, C., Muzzonigro, G., Castellucci, M., & Cinti, S. (2008). Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. Journal of lipid research, 49(7), 1562-1568.
Murphy, K. M., & Reiner, S. L. (2002). Decision making in the immune system: the lineage decisions of helper T cells. Nature Reviews Immunology, 2(12), 933.
Myers Jr, M. G., Leibel, R. L., Seeley, R. J., & Schwartz, M. W. (2010). Obesity and leptin resistance: distinguishing cause from effect. Trends in Endocrinology & Metabolism, 21(11), 643-651.
Nakayama, T., Hirahara, K., Onodera, A., Endo, Y., Hosokawa, H., Shinoda, K., Tumes, D. J., & Okamoto, Y. (2017). Th2 cells in health and disease. Annual review of immunology, 35, 53-84.
Nakurte, I., Kirhnere, I., Namniece, J., Saleniece, K., Krigere, L., Mekss, P., Vicupe, Z., Bleidere, M., Legzdina, L., & Muceniece, R. (2013). Detection of the lunasin peptide in oats (Avena sativa L). Journal of cereal science, 57(3), 319-324.
National, C. E. P. N. (2002). Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation, 106(25), 3143.
Nieman, D. C., Henson, D. A., Nehlsen-Cannarella, S. L., Ekkens, M., Utter, A. C., Butterworth, D. E., & Fagoaga, O. R. (1999). Influence of obesity on immune function. Journal of the American Dietetic Association, 99(3), 294-299.
Nishimura, S., Manabe, I., Nagasaki, M., Eto, K., Yamashita, H., Ohsugi, M., Otsu, M., Hara, K., Ueki, K., Sugiura, S., Yoshimura, K., Kadowaki, T., & Nagai, R. (2009). CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature medicine, 15(8), 914.
Odani, S., Koide, T., & Ono, T. (1987). Amino acid sequence of a soybean (Glycine max) seed polypeptide having a poly (L-aspartic acid) structure. Journal of Biological Chemistry, 262(22), 10502-10505.
O'Garra, A., & Vieira, P. (2007). T H 1 cells control themselves by producing interleukin-10. Nature Reviews Immunology, 7(6), 425.
Oh, D. K., Ciaraldi, T., & Henry, R. R. (2007). Adiponectin in health and disease. Diabetes, Obesity and Metabolism, 9(3), 282-289.
Ohashi, K., Yuasa, D., Shibata, R., Murohara, T., & Ouchi, N. (2015). Adiponectin as a target in obesity-related inflammatory state. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders), 15(2), 145-150.
Osborn, O., Gram, H., Zorrilla, E. P., Conti, B., & Bartfai, T. (2008). Insights into the roles of the inflammatory mediators IL-1, IL-18 and PGE2 in obesity and insulin resistance. Swiss medical weekly, 138(45), 665.
Ouchi, N., Kihara, S., Arita, Y., Nishida, M., Matsuyama, A., Okamoto, Y., Ishigami, M., Kuriyama, H., Kishida, K., Nishizawa, H., Hotta, K., Muraguchi, M., Ohmoto, Y., Yamashita, S., Funahashi, T., & Matsuzawa, Y. & Hotta, K. (2001). Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation, 103(8), 1057-1063.
Pabona, J. M. P., Dave, B., Su, Y., Montales, M. T. E., Ben, O., De Mejia, E. G., ... & Simmen, R. C. (2013). The soybean peptide lunasin promotes apoptosis of mammary epithelial cells via induction of tumor suppressor PTEN: similarities and distinct actions from soy isoflavone genistein. Genes & nutrition, 8(1), 79.
Page-Wilson, G., Meece, K., White, A., Rosenbaum, M., Leibel, R. L., Smiley, R., & Wardlaw, S. L. (2015). Proopiomelanocortin, agouti-related protein, and leptin in human cerebrospinal fluid: correlations with body weight and adiposity. American Journal of Physiology-Endocrinology and Metabolism, 309(5), E458-E465.
Parekh, N., Chandran, U., & Bandera, E. V. (2012). Obesity in cancer survival. Annual review of nutrition, 32, 311-342.
Park, J. H., Jeong, H. J., & Lumen, B. O. D. (2007). In vitro digestibility of the cancer-preventive soy peptides lunasin and BBI. Journal of agricultural and food chemistry, 55(26), 10703-10706.
Park, J. U., Kang, B. Y., Lee, H. J., Kim, S., Bae, D., Park, J. H., & Kim, Y. R. (2017). Tetradecanol reduces EL-4 T cell growth by the down regulation of NF-κB mediated IL-2 secretion. European journal of pharmacology, 799, 135-142.
Paucar-Menacho, L. M., Berhow, M. A., Mandarino, J. M. G., Chang, Y. K., & De Mejia, E. G. (2010b). Effect of time and temperature on bioactive compounds in germinated Brazilian soybean cultivar BRS 258. Food research international, 43(7), 1856-1865.
Paucar-Menacho, L. M., Berhow, M. A., Mandarino, J. M. G., de Mejia, E. G., & Chang, Y. K. (2010a). Optimisation of germination time and temperature on the concentration of bioactive compounds in Brazilian soybean cultivar BRS 133 using response surface methodology. Food Chemistry, 119(2), 636-642.
Pellegrinelli, V., Carobbio, S., & Vidal-Puig, A. (2016). Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia, 59(6), 1075-1088.
Platz, E. A., Kulac, I., Barber, J. R., Drake, C. G., Joshu, C. E., Nelson, W. G., Scott Lucia, M., Klein, E. A., Lippman, S. M., Parnes, H. L., Thompson, I. M.,Goodman, P.J., Tangen, C. M., & De Marzo, A. M. (2017). A prospective study of chronic inflammation in benign prostate tissue and risk of prostate cancer: linked PCPT and SELECT cohorts. Cancer Epidemiology and Prevention Biomarkers.
Prentice, A. M. (2005). The emerging epidemic of obesity in developing countries. International journal of epidemiology, 35(1), 93-99.
Price, S. J., Pangloli, P., & Dia, V. P. (2017). Pepsin–pancreatin hydrolysis reduced the ability of lunasin-enriched material to inhibit activation of the inflammasomes in THP-1 human macrophages. Food & function, 8(12), 4449-4458.
Price, S. J., Pangloli, P., Krishnan, H. B., & Dia, V. P. (2016). Kunitz trypsin inhibitor in addition to Bowman-Birk inhibitor influence stability of lunasin against pepsin-pancreatin hydrolysis. Food research international, 90, 205-215.
Pyo, M. Y., Yoon, S. J., Yu, Y., Park, S., & Jin, M. (2014). Cyanidin-3-glucoside suppresses Th2 cytokines and GATA-3 transcription factor in EL-4 T cells. Bioscience, biotechnology, and biochemistry, 78(6), 1037-1043.
Qi, R. F., Song, Z. W., & Chi, C. W. (2005). Structural features and molecular evolution of Bowman‐Birk protease inhibitors and their potential application. Acta biochimica et biophysica Sinica, 37(5), 283-292.
Ragheb, R., Shanab, G. M., Medhat, A. M., Seoudi, D. M., Adeli, K., & Fantus, I. G. (2009). Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction: evidence for PKC activation and oxidative stress-activated signaling pathways. Biochemical and biophysical research communications, 389(2), 211-216.
Rains, J. L., & Jain, S. K. (2011). Oxidative stress, insulin signaling, and diabetes. Free Radical Biology and Medicine, 50(5), 567-575.
Rausch, M. E., Weisberg, S., Vardhana, P., & Tortoriello, D. V. (2008). Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. International journal of obesity, 32(3), 451.
Ray, I., Mahata, S. K., & De, R. K. (2016). Obesity: an immunometabolic perspective. Frontiers in endocrinology, 7, 157.
Ren, G., Zhu, Y., Shi, Z., & Li, J. (2017). Detection of lunasin in quinoa (Chenopodium quinoa Willd.) and the in vitro evaluation of its antioxidant and anti‐inflammatory activities. Journal of the Science of Food and Agriculture, 97(12), 4110-4116.
Ritchie, S. A., & Connell, J. M. C. (2007). The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutrition, Metabolism and cardiovascular diseases, 17(4), 319-326.
Rochman, Y., Spolski, R., & Leonard, W. J. (2009). New insights into the regulation of T cells by γ c family cytokines. Nature Reviews Immunology, 9(7), 480.
Rorato, R., Borges, B. D. C., Uchoa, E. T., Antunes-Rodrigues, J., Elias, C. F., & Elias, L. L. K. (2017). LPS-induced low-grade inflammation increases hypothalamic JNK expression and causes central insulin resistance irrespective of body weight changes. International journal of molecular sciences, 18(7), 1431.
Rosen, E. D., & Spiegelman, B. M. (2014). What we talk about when we talk about fat. Cell, 156(1-2), 20-44.
Rudich, A., Tirosh, A., Potashnik, R., Hemi, R., Kanety, H., & Bashan, N. (1998). Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes, 47(10), 1562-1569.
Saiga, A. I., Tanabe, S., & Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of agricultural and food chemistry, 51(12), 3661-3667.
Sáinz, N., Barrenetxe, J., Moreno-Aliaga, M. J., & Martínez, J. A. (2015). Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism, 64(1), 35-46.
Sakaguchi, S., Yamaguchi, T., Nomura, T., & Ono, M. (2008). Regulatory T cells and immune tolerance. Cell, 133(5), 775-787.
Santos-Alvarez, J., Goberna, R., & Sánchez-Margalet, V. (1999). Human leptin stimulates proliferation and activation of human circulating monocytes. Cellular immunology, 194(1), 6-11.
Saraiva, M., & O'garra, A. (2010). The regulation of IL-10 production by immune cells. Nature reviews immunology, 10(3), 170.
Sarkar, A., Gogia, N., Glenn, N., Singh, A., Jones, G., Powers, N., Srivastava, A., Kango-Singh, M., & Singh, A. (2018). A soy protein Lunasin can ameliorate amyloid-beta 42 mediated neurodegeneration in Drosophila eye. Scientific reports, 8(1), 13545.
Sato-Mito, N., Suzui, M., Yoshino, H., Kaburagi, T., & Sato, K. (2009). Long term effects of high fat and sucrose diets on obesity and lymphocyte proliferation in mice. JNHA-The Journal of Nutrition, Health and Aging, 13(7), 602.
Saucillo, D. C., Gerriets, V. A., Sheng, J., Rathmell, J. C., & MacIver, N. J. (2014). Leptin metabolically licenses T cells for activation to link nutrition and immunity. The Journal of Immunology, 1301158.
Savini, I., Catani, M., Evangelista, D., Gasperi, V., & Avigliano, L. (2013). Obesity-associated oxidative stress: strategies finalized to improve redox state. International journal of molecular sciences, 14(5), 10497-10538.
Serra, D., Mera, P., Malandrino, M. I., Mir, J. F., & Herrero, L. (2013). Mitochondrial fatty acid oxidation in obesity. Antioxidants & redox signaling, 19(3), 269-284.
Setoguchi, R., Hori, S., Takahashi, T., & Sakaguchi, S. (2005). Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. Journal of Experimental Medicine, 201(5), 723-735.
Shiau, M. Y., Lu, H. F., Chang, Y. H., Chiu, Y. C., & Shih, Y. L. (2015). Characterization of proteins regulated by interleukin-4 in 3T3-L1 adipocytes. SpringerPlus, 4(1), 242.
Shulman, G. I. (2000). Cellular mechanisms of insulin resistance. The Journal of clinical investigation, 106(2), 171-176.
Stafeev, I. S., Michurina, S. S., Podkuychenko, N. V., Vorotnikov, A. V., Menshikov, M. Y., & Parfyonova, Y. V. (2018). Interleukin-4 Restores Insulin Sensitivity in Lipid-Induced Insulin-Resistant Adipocytes. Biochemistry (Moscow), 83(5), 498-506.
Stott, B., Lavender, P., Lehmann, S., Pennino, D., Durham, S., & Schmidt-Weber, C. B. (2013). Human IL-31 is induced by IL-4 and promotes TH2-driven inflammation. Journal of allergy and clinical immunology, 132(2), 446-454.
Subbaramaiah, K., Morris, P. G., Zhou, X. K., Morrow, M., Du, B., Giri, D., Kopelovich, L., Hudis, C. A., & Dannenberg, A. J. (2012). Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer discovery, 2(4), 356-365.
Sugimoto, M. A., Sousa, L. P., Pinho, V., Perretti, M., & Teixeira, M. M. (2016). Resolution of inflammation: what controls its onset?. Frontiers in immunology, 7, 160.
Swidnicka-Siergiejko, A. K., Gomez-Chou, S. B., Cruz-Monserrate, Z., Deng, D., Liu, Y., Huang, H., Ji, B., Azizian, N., Daniluk, J., Lu, W., Wang, H., Maitra, A., & Logsdon, C. D. (2017). Chronic inflammation initiates multiple forms of K-Ras-independent mouse pancreatic cancer in the absence of TP53. Oncogene, 36(22), 3149.
Szabo, S. J., Kim, S. T., Costa, G. L., Zhang, X., Fathman, C. G., & Glimcher, L. H. (2000). A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell, 100(6), 655-669.
Tanaka, S. I., Inoue, S., Isoda, F., Waseda, M., Ishihara, M., Yamakawa, T., Sugiyama, A., Takamura, Y., & Okuda, K. (1993). Impaired immunity in obesity: suppressed but reversible lymphocyte responsiveness. International journal of obesity and related metabolic disorders: journal of the International Association for the Study of Obesity, 17(11), 631-636.
Tanaka, S. I., Isoda, F., Yamakawa, T., Ishihara, M., & Sekihara, H. (1998). T lymphopenia in genetically obese rats. Clinical immunology and immunopathology, 86(2), 219-225.
Torres, L., Martins, V. D., Faria, A. M. C., & Maioli, T. U. (2018). The intriguing relationship between obesity and infection. J Infectiology, 1(1), 6-10.
Tsai, S. H., Lin‐Shiau, S. Y., & Lin, J. K. (1999). Suppression of nitric oxide synthase and the down‐regulation of the activation of NFκB in macrophages by resveratrol. British journal of pharmacology, 126(3), 673-680.
Tsatsanis, C., Zacharioudaki, V., Androulidaki, A., Dermitzaki, E., Charalampopoulos, I., Minas, V., Gravanis, A., & Margioris, A. N. (2005). Adiponectin induces TNF-α and IL-6 in macrophages and promotes tolerance to itself and other pro-inflammatory stimuli. Biochemical and biophysical research communications, 335(4), 1254-1263.
Tung, C. Y., Lewis, D. E., Han, L., Jaja, M., Yao, S., Li, F., Robertson, M., Zhou, B., Sun, J., & Chang, H. C. (2014). Activation of dendritic cell function by soypeptide lunasin as a novel vaccine adjuvant. Vaccine, 32(42), 5411-5419.
van der Heijden, R. A., Sheedfar, F., Morrison, M. C., Hommelberg, P. P., Kor, D., Kloosterhuis, N. J., Gruben, N., Youssef, S. A., de Bruin, A., Hofker, M. H., Kleemann, R., Koonen, D. P. Y., & Heeringa, P. (2015). High-fat diet induced obesity primes inflammation in adipose tissue prior to liver in C57BL/6j mice. Aging (Albany NY), 7(4), 256.
Varalakshmi, C. H., Ali, A. M., Pardhasaradhi, B. V. V., Srivastava, R. M., Singh, S., & Khar, A. (2008). Immunomodulatory effects of curcumin: in-vivo. International immunopharmacology, 8(5), 688-700.
Vighi, G., Marcucci, F., Sensi, L., Di Cara, G., & Frati, F. (2008). Allergy and the gastrointestinal system. Clinical & Experimental Immunology, 153, 3-6.
Wang, D., & DuBois, R. N. (2012). The role of the PGE2–aromatase pathway in obesity-associated breast inflammation. Cancer discovery, 2(4), 308-310.
Wang, W., Dia, V. P., Vasconez, M., de Mejia, E. G., & Nelson, R. L. (2008). Analysis of soybean protein-derived peptides and the effect of cultivar, environmental conditions, and processing on lunasin concentration in soybean and soy products. Journal of AOAC International, 91(4), 936-946.
Wang, Y., Yu, L., Xia, H., & Jiang, H. (2018). MAST CELLS MODULATE THE PATHOGENESIS OF LEPTIN-INDUCED VENTRICULAR ARRHYTHMIAS IN CANINE. Journal of the American College of Cardiology, 71(11), A416.
Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W. (2003). Obesity is associated with macrophage accumulation in adipose tissue. The Journal of clinical investigation, 112(12), 1796-1808.
WHO (2018.02.16). Obesity and overweight. Retrieved from https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight [Accessed 2018.12.16]
WHO. Obesity. Retrieved from http://www.who.int/topics/obesity/en/ [Accessed 2018.10.14]
Williams, M. A., Tyznik, A. J., & Bevan, M. J. (2006). Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature, 441(7095), 890.
Winzell, M. S., & Ahrén, B. (2004). The high-fat diet–fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes, 53(suppl 3), S215-S219.
Wong, C. P., Nguyen, L. P., Noh, S. K., Bray, T. M., Bruno, R. S., & Ho, E. (2011). Induction of regulatory T cells by green tea polyphenol EGCG. Immunology letters, 139(1-2), 7-13.
Wrann, C. D., Laue, T., Hübner, L., Kuhlmann, S., Jacobs, R., Goudeva, L., & Nave, H. (2011). Short-term and long-term leptin exposure differentially affect human natural killer cell immune functions. American Journal of Physiology-Endocrinology and Metabolism, 302(1), E108-E116.
Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., Sole, J., Nichols, A., Ross, J. S., Tartaglia, L. A., & Chen, H. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. The Journal of clinical investigation, 112(12), 1821-1830.
Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunodaq, M., Murakamiq, K., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, N. H., Shibata, Y., Terauchi, Y., Froguel, P., Tobe, K., Koyasu, S., Taira, K., Kitamura, T., Shimizuk, T., Nagai, R., & Kadowaki, T. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 423(6941), 762.
Yan, L., Sundaram, S., & Nielsen, F. H. (2017). Voluntary running of defined distances reduces body adiposity and its associated inflammation in C57BL/6 mice fed a high-fat diet. Applied Physiology, Nutrition, and Metabolism, 42(11), 1179-1184.
Yang, X., Zhu, J., Tung, C. Y., Gardiner, G., Wang, Q., Chang, H. C., & Zhou, B. (2015). Lunasin alleviates allergic airway inflammation while increases antigen-specific Tregs. PloS one, 10(2), e0115330.
Yang, Y., Paik, J. H., Cho, D., Cho, J. A., & Kim, C. W. (2008). Resveratrol induces the suppression of tumor-derived CD4+ CD25+ regulatory T cells. International immunopharmacology, 8(4), 542-547.
Ye, J., Gao, Z., Yin, J., & He, Q. (2007). Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. American Journal of Physiology-Endocrinology and Metabolism, 293(4), E1118-E1128.
Yoshimoto, T. (2018). The hunt for the source of primary IL-4: how we discovered that NKT cells and basophils determine Th2 cell differentiation in vivo. Frontiers in Immunology, 9, 716.
Zhao, Y., Lin, L., Li, J., Xiao, Z., Chen, B., Wan, L., Li, M., Wu, X., Cho, C. H., & Shen, J. (2018). CD4+ T cells in obesity and obesity-associated diseases. Cellular immunology.
Zhu, J., Yamane, H., & Paul, W. E. (2009). Differentiation of effector CD4 T cell populations. Annual review of immunology, 28, 445-489.
Zhu, Y., Li, H., & Wang, X. (2017). Lunasin abrogates monocytes to endothelial cells. Molecular immunology, 92, 146-150.
Zlotnikov, N., Javid, A., Ahmed, M., Eshghi, A., Tang, T. T., Arya, A., Bansal, A., Matar, F., Parikh, M., Ebady, R., Koh, A., Gupta, N., Song, P., Zhang, Y., Newbigging, S., Wormser, G. P., Schwartz, I., Inman, R., Glogauer, M., & Moriarty, T. (2017). Infection with the Lyme disease pathogen suppresses innate immunity in mice with diet‐induced obesity. Cellular microbiology, 19(5), e12689.

下載圖示
QR CODE