簡易檢索 / 詳目顯示

研究生: 郭峻銓
Kuo, Chun-Chuan
論文名稱: 以表面電漿共振技術探討電化學法之石墨烯氧化物去氧還原過程
Using Surface Plasmon Resonance Technology to Detect the Deoxidized Process of Electrochemical Reduction of Graphene Oxide
指導教授: 邱南福
Chiu, Nan-Fu
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 52
中文關鍵詞: 表面電漿共振石墨烯氧化物電化學還原
英文關鍵詞: surface plasmon resonance, graphene oxide, electrochemical reduction
論文種類: 學術論文
相關次數: 點閱:257下載:36
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面電漿共振(surface plasmon resonance,SPR)技術利用表面電漿波(surface plasmon wave,SPW)可偵測固體表面物質的些微變化。本論文利用電化學循環伏安法(cyclic voltammetry,CV)還原石墨烯氧化物(graphene oxide,GO)並搭配SPR技術即時檢測GO的還原現象,其還原態則稱為「還原石墨烯氧化物(reduced graphene oxide,rGO)」。在去氧還原的過程中因為GO的折射率變化使得SPR角度產生位移現象。因此可藉由位移角度的變化量推測rGO的還原程度。
    實驗流程首先在在金膜表面連結十八烷基硫醇(1-Octadecanethiol,ODT),作為GO的連結層。然後將金膜浸泡於GO水溶液裡,使GO連結在金膜表面。使用電化學CV還原GO以得到rGO,還原過程中同時記錄SPR角位移。除了1層GO,本實驗另外製作多層GO,比較層數對於電化學還原法與SPR角變化的影響。最後以X光光電子能譜儀(X-ray photoelectron spectroscopy,XPS)驗證經CV不同掃描圈數所得之rGO的碳含量。
    當GO層數越來越多時,介電層的整體折射率以及厚度造成SPR角往大角度移動,降低漸逝波與表面電漿波的耦合效率。經過電化學法還原GO後,rGO的SPR角將會往小角度移動,且SPR曲線也會因此變得比較窄以及SPR耦合效率提升。

    Surface plasmon resonance (SPR) technology can detect the slight variation of materials near the solid surface by surface plasmon wave (SPW). This paper used cyclic voltammetry (CV) of electrochemistry to restore graphene oxide (GO), and used SPR technology to detect the phenomenon of reduction of GO, simultaneously. The electrochemically reduced GO, referred to as rGO herein. The SPR angle shifted in the process of deoxidization since the refractive index of GO changed, so we could presume the extent of reduction of GO by SPR angle shift.
    In the beginning of this experiment, we used 1-Octadecanethiol (ODT) to be a linker for GO. Then immersed the Au in the GO aqueous solution to make the GO sheet on the surface of Au. We used CV to restore GO and got rGO sheet, and recorded the SPR angle in the meantime. In addition to monolayer GO, we made multilayer GO to observe the number of layer influence the CV curve and SPR angle. In the last we used X-ray photoelectron spectroscopy (XPS) to proof the carbon level of rGO after different CV scan number of reduction.
    While the layer of GO become much more, the whole refractive index of dielectric layer and thickness will make the SPR angle shift to bigger angle, which decrease the coupling efficiency of SPW and evanescent wave. After electrochemical reduction, the SPR angle will shift to small angle and the SPR curve will become narrower and increase coupling efficiency.

    致謝 …………………………………………………………………… I 摘要 ……………………………………………………………………II Abstract ………………………………………………………… III 目錄 …………………………………………………………………… IV 表目錄 ………………………………………………………………… VI 圖目錄 …………………………………………………………………VII 第一章 緒論 ………………………………………………………… 1 1.1 前言 ………………………………………………………………1 1.2 研究動機與目標 ………………………………………………… 1 第二章 理論與文獻回顧 ………………………………………………3 2.1石墨烯 ……………………………………………………………3 2.1.1石墨烯簡介 …………………………………………………3 2.1.2石墨烯氧化物之化學結構與特性 …………………………4 2.1.3石墨烯氧化物的製備與還原方法 …………………………4 2.2表面電漿共振 ………………………………………………………5 2.2.1 表面電漿簡介 ……………………………………………… 5 2.2.2表面電漿共振原理 ………………………………………… 8 2.3 循環伏安法 (cyclic voltammetry, CV) ……………… 10 2.4 自我組裝單層膜 ……………………………………………………11 2.4.1 分子自組裝薄膜簡介 ………………………………………11 2.4.2自組裝薄膜分子之結構 ………………………………………11 第三章 實驗藥品、儀器及準備 ………………………………………13 3.1 藥品 ………………………………………………………………13 3.2 儀器設備 ……………………………………………………………14 3.3 溶液配製 ……………………………………………………………15 3.4 自行架設之多功能電漿量測系統 ……………………………… 15 3.5 感測晶片與電化學電極之製作 …………………………………17 第四章 實驗操作與討論 …………………………………………………18 4.1儀器設備與實驗操作 …………………………………………………18 4.2實驗結果與討論 ……………………………………………………23 4.2.1 石墨烯氧化物/還原石墨烯氧化物之SPR分析 ………………23 4.2.2 電化學之還原石墨烯氧化物分析 …………………………… 38 4.2.3 石墨烯氧化物/還原石墨烯氧化物之XPS分析…………………41 第五章 結論與未來工作 ………………………………………………… 45 5.1 結論 …………………………………………………………………45 5.2 未來工作與展望………………………………………………………46 參考文獻………………………………………………………………… 47

    [1]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, 306, 666 (2004).
    [2]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo , D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett., 8, 902 (2008).
    [3]J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nature Nanotech., 3, 206 (2008).
    [4]A. Geim and K. Novoselov, “For groundbreaking experiments regarding the two-dimensional material graphene,” The Nobel Prize in Physics (2010). http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/
    [5]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science, 312, 1191 (2006).
    [6]Y. Shi, Wu Zhou, A.-Y. Lu, W. Fang, Y.-H. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L.-J. Li, J.-C. Idrobo, and Jing Kong, “Van der Waals epitaxy of MoS2 layers using graphene as growth templates,” Nano Lett., 12, 2784 (2012).
    [7]T. Niu , M. Zhou, J. Zhang, Y. Feng, and Wei Chen, “Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene,” J. Am. Chem. Soc., 135, 8409 (2013).
    [8]X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A.Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, 324, 1312 (2009).
    [9]P. K. Srivastava and S. Ghosh, “Eliminating defects from graphene monolayers during chemical exfoliation,” Appl. Phys. Lett., 102, 043102 (2013).
    [10]N. F. Chiu, T. Y. Huang, C. C. Kuo, W. C. Lee, M. H. Hsieh, and H. C. Lai, “Single-layer graphene based SPR biochips for tuberculosis bacillus detection,” Proc. SPIE 8427, 84273M1-84273M7 (2012).
    [11]X. Xu, D. Huang, K. Cao, M. Wang, S. M. Zakeeruddin, and M. Gratzel, “Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells,” Sci. Rep., 3, 1489 (2013).
    [12]W. Deng, X. Ji, M. Gomez-Mingot, F. Lu, Q. Chena and C. E. Banks, “Graphene electrochemical supercapacitors: the influence of oxygen functional groups,” Chem. Commun., 48, 2770 (2012).
    [13]H. R. Byon , B. M. Gallant , S. W. Lee , and Y. Shao-Horn, “Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries,” Adv. Funct. Mater., 23, 1037 (2013).
    [14]C. Hontoria-Lucas, A. J. López-Peinado, J. D. López-González, M. L. Rojas-Cervantes, R. M. Martín-Aranda, “Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization,” Carbon, 33, 1585 (1995).
    [15]S. Park, J. An, I. Jung, R. D. Piner, S. J. An, X. Li, A. Velamakanni, and R. S. Ruoff, “Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents,” Nano Lett., 9, 1593 (2009).
    [16]A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and V. B. Shenoy, “Structural evolution during the reduction of chemically derived graphene oxide,” Nature Chem., 2, 581 (2010).
    [17]J. Ito, J. Nakamura, and A. Natori, “Semiconducting nature of the oxygen-adsorbed graphene sheet,” J. Appl. Phys., 103, 113712 (2008).
    [18]Z. Luo, P. M. Vora, E. J. Mele, A. T. Charlie Johnson, and J. M. Kikkawa, “Photoluminescence and band gap modulation in graphene oxide,” Appl. Phys. Lett., 94, 111909 (2009).
    [19]G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, M. Chhowalla., “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater., 22, 505 (2009).
    [20]K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem., 2, 1015 (2010).
    [21]W. S. Hummers Jr. and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc., 80, 1339 (1958).
    [22]Y. Xu , H. Bai , G. Lu , C. Li, and G. Shi, “Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets,” J. Am. Chem. Soc., 130, 5856 (2008).
    [23]R. Wang, Y. Wang, C. Xu, J. Sun, and L. Gao, “Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: reduction effect and mechanisms,” RSC Adv., 3, 1194 (2013).
    [24]M. Acik, G. Lee, C. Mattevi, A. Pirkle, R. M. Wallace, M. Chhowalla, K. Cho, and Y. Chabal, “The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy,” J. Phys. Chem. C, 115, 19761 (2011).
    [25]Z. Wang, S. Wu, J. Zhang, P. Chen, G. Yang, X. Zhou, Q. Zhang, Q. Yan, and Hua Zhang, “Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction,” Nanoscale Res. Lett., 7:161 (2012).
    [26]R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Phil. Mag., 4, 396 (1902).
    [27]R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev., 106, 874 (1957).
    [28]U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev., 124, 1866 (1961).
    [29]A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys., 216, 398 (1968).
    [30]E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys., 241, 313 (1971).
    [31]B. Liedberg, C. Nylander, and I. Lundström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators, 4, 299 (1983).
    [32]http://www.biacore.com/lifesciences/index.html
    [33]H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, “Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers,” J. Am. Chem. Soc., 115, 9389 (1993).
    [34]S. Yang, B. Xu, J. Zhang, X. Huang, J. Ye, and C. Yu, “Controllable adsorption of reduced graphene oxide onto self-assembled alkanethiol monolayers on gold electrodes: tunable electrode dimension and potential electrochemical applications,” J. Phys. Chem. C, 114, 4389 (2010).
    [35]X. Xie, K. Zhao, X. Xu, W. Zhao, S. Liu, Z. Zhu, M. Li, Z. Shi, and Y. Shao, “Study of heterogeneous electron transfer on the graphene/self-assembled monolayer modified gold electrode by electrochemical approaches,” J. Phys. Chem. C, 114, 14243 (2010).
    [36]J. Ou, J. Wang, S. Liu, B. Mu, J. Ren, H. Wang, and S. Yang, “Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly,” Langmuir, 26, 15830 (2010).
    [37]T. W. Chen, Z. H. Sheng, K. Wang, F. B. Wang, and X. H. Xia, “Determination of explosives using electrochemically reduced graphene,” Chem. Asian J., 6, 1216 (2011).
    [38]S. Wang, S. Boussaad, S. Wong, and N. J. Tao, “High-sensitivity Stark spectroscopy obtained by surface plasmon resonance measurement,” Anal. Chem., 72, 4003 (2000).
    [39]P. Zhai, J. Guo, J. Xiang, and F. Zhou, “Electrochemical surface plasmon resonance spectroscopy at bilayered silver/gold films,” J. Phys. Chem. C, 111, 981 (2007).
    [40]Y. Shen, P. Zhou, Q. Q. Sun, L. Wan, J. Li, L. Y. Chen, D. W. Zhang, and X. B. Wang, “Optical investigation of reduced graphene oxide by spectroscopic ellipsometry and the band-gap tuning,” Appl. Phys. Lett., 99, 141911 (2011).
    [41]I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C, 112, 8499 (2008).
    [42]Z. Wang, X. Zhou, J. Zhang, F. Boey, and H. Zhang, “Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase,” J. Phys. Chem. C, 113, 14071 (2009).
    [43]G. K. Ramesha and S. Sampath, “Electrochemical reduction of oriented graphene oxide films an in situ Raman spectroelectrochemical study,” J. Phys. Chem. C, 113, 7985 (2009).
    [44]V. S. Dilimon, and S. Sampath, “Electrochemical preparation of few layer-graphene nanosheets via reduction of oriented exfoliated graphene oxide thin films in acetamide–urea–ammonium nitrate melt under ambient conditions,” Thin Solid Films, 519, 2323 (2011).
    [45]A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, “Highly selective gas sensor arrays based on thermally reduced graphene oxide,” Nanoscale, 5, 5426 (2013).
    [46]J. Hassinen, J. Kauppila, J. Leiro, A. Määttänen, P. Ihalainen, J. Peltonen, and J. Lukkari, “Low-cost reduced graphene oxide-based conductometric nitrogen dioxide-sensitive sensor on paper,” Anal. Bioanal. Chem., 405, 3611 (2013).
    [47]J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano, 3, 301 (2009).
    [48]G. Lu, L. E. Ocola, and J. Chen, “Reduced graphene oxide for room-temperature gas sensors,” Nanotechnology, 20, 445502 (2009).

    下載圖示
    QR CODE