簡易檢索 / 詳目顯示

研究生: 簡弘聖
Chien, Hung-Sheng
論文名稱: 碘催化吲哚與4-羰基-2,4-二苯基丁醛苯環化合成咔唑衍生物
Iodine-Catalyzed Benzannulation of Indoles with 4-Oxo-2,4-diphenylbutanals for the Synthesis of Carbazoles Derivatives
指導教授: 姚清發
Yao, Ching-Fa
口試委員: 姚清發
Yao, Ching-Fa
林文偉
Lin, Wen-Wei
柳如宗
Liu, Ju-Tsung
口試日期: 2023/06/28
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 147
中文關鍵詞: 咔唑親電芳香取代反應消去反應苯環化
英文關鍵詞: Carbazole, Iodine, Electrophilic Aromatic substitution, Elimination reaction, Benzannulation
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301041
論文種類: 學術論文
相關次數: 點閱:55下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文首先回顧了關於咔唑(Carbazole)及其衍生物的合成和應用,接著是報導了我們所開發出的咔唑化合物合成策略以及結論的資訊。我們的合成策略是使用碘當為路易斯酸的催化條件下,將吲哚(Indole)和4-羰基-2,4-二苯基丁醛(4-Oxo-2,4-diphenylbutanal)進行兩次的親電芳香取代(SEAr)反應,反應機構推測會經過幾次的消去反應後並進行苯環化,而成功的合成出咔唑產物。

    This thesis reviews the synthesis and application of Carbazole and its derivatives at the beginning, followed by the synthesis strategy and conclusion of Carbazole compounds developed by us. The synthesis strategy we use is to use iodine as the catalytic condition of Lewis acid, indole will undergo two electrophilic aromatic substitution reactions on 4-Oxo-2,4-diphenylbutanal, And, it is speculated that there will be two elimination reactions to achieve Benzannulation, and finally the carbazole product is successfully synthesized.

    中文摘要 i Abstract ii 第一章 文獻回顧 1 1-1 咔唑衍生物及其具有生物活性的生物鹼 1 1-2 咔唑及其衍生物的合成 2 第二章 實驗目標 7 第三章 實驗結果與討論 8 3-1 起始物的製備 8 3-2合成咔唑衍生物的條件篩選 10 3-3 反應機構的探討 12 3-4不同取代基受質測試 15 第四章 結論 22 第五章 實驗方法 23 5-1分析儀器及實驗操作 23 5-2 實驗步驟 26 第六章 參考資料 31 第七章 光譜資料 33

    Zhang, F.-F.; Yan, J.-P.; Zhou, C.-H. Chin. J. Org. Chem. 2010, 30 (6), 783-796.

    Smith, Hugh M. (EDT). (2002). High Performance Pigments. U.S.: John Wiley & Sons Inc.

    Wu, T.-S.; Huang, S.-C.; Wu, P.-L.; Teng, C.-M. Phytochemistry 1996, 43 (1), 133-140.

    Thilahgavani, N.; Perumal, R.; Mohd, E. A. W.; Thirukanthan, C. S.; Charles, S. V. Molecules 2011, 16, 9651-9664.

    Drechsel, E. J. Prakt. Chem. 1888, 38 (1), 65-74.

    Borsche, W. Justus Liebigs Ann. Chem. 1908, 359 (1-2), 49-80.

    Graebe, C.; Ullmann, F. Justus Liebigs Ann. Chem. 1896, 291 (1-2), 16-17.

    Tucker, S. H.; Preston, R. W. G.; Cameron, J. M. L. J. Chem. Soc. 1942, 500.

    Creencia, E. C., Kosaka, M., Muramatsu, T., Kobayashi, M., Iizuka, T. Horaguchi, T. J. Heterocyclic Chem. 2009, 46 (6), 1309-1317.

    Jia, G.-C.; Lin, Z.-Y.; Guo, T.-X.; Li, J.; Shou, W.-G. Organometallics 2009, 28 (24), 6847–6854.

    Yamashita, M.; Horiguchi, H.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74 (19), 7481–7488.

    Kundu, B.; Saifuddin, M.; Mandadapu, K. A.; Samala, S. J. Org. Chem. 2013, 78 (13), 6769–6774.

    Li, Z.-P.; Wang, W.-X.; Lu, S.-L.; Lv, L.-Y., Zheng, X.-J. Organic Letters 2014, 16 (19), 5156-5159.

    Ferreira, J. R. M.; Silva, R. N.; Rocha, J.; Silva, A. M. S.; Guieu, S. Synlett. 2020, 31 (6), 632-634.

    Xu, B.; Hong, X.-H.; Huang, X.-M.; Xu, S.-G. Org. Lett. 2012, 14 (17), 4614-4617.

    Ban, K.; Yamamoto, Y.; Sajiki, H.; Sawama, Y. Org. Biomol. Chem. 2020, 18 (20), 3898-3902.

    Chi, Y. R.; Tiwari, B.; Xing, C.; Zhang, J. J. Am. Chem. Soc. 2013, 135 (22), 8113-8116.

    下載圖示
    QR CODE