簡易檢索 / 詳目顯示

研究生: 卓均奐
JHUO, Jyun-Huan
論文名稱: 影響泰利颱風(2017)路徑北轉關鍵因素之研究
A study of factors that influence the track of Typhoon Talim (2017)
指導教授: 簡芳菁
Chien, Fang-Ching
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 105
中文關鍵詞: 颱風數值模擬系集預報氣旋移除方法
DOI URL: http://doi.org/10.6345/NTNU202000280
論文種類: 學術論文
相關次數: 點閱:117下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 泰利(Talim)颱風於2017年9月9日形成,雖未登陸台灣,但中央氣象局與全球多個預報中心針對泰利颱風路徑預報皆未預測其路徑北轉現象。本研究利用WRF模式針對泰利颱風進行數值模擬實驗,採用NCEP FNL及ECMWF ERA5兩種不同全球模式初始場資料進行不同初始時間之系集預報,藉以探討泰利颱風路徑北轉之關鍵因素。
    模擬結果顯示,EN_ERA5組較EN_FNL組在平均路徑誤差方面有較佳之模擬結果,根據此結果探討環境場中西北太平洋周遭天氣系統與泰利颱風北轉之間的關係,利用EN_ERA5組系集成員500 hPa高度場與轉向角α之相關性檢驗分析,顯示環境場中杜蘇芮颱風存在、副高系統東退與北方高層槽東移三因素為影響泰利颱風路徑北轉之關鍵因素,且杜蘇芮颱風對泰利颱風路徑北轉之貢獻程度約為副高系統東退與北方高層槽東移的兩倍。
    此外,使用ECMWF ERA5較NCEP FNL資料提早預報杜蘇芮的生成,其原因為ECMWF ERA5相對NCEP FNL在初始場中同化更多觀測資料且具備較多有利於颱風生成條件,提供颱風生成初期良好之發展環境。

    致謝 I 摘要 II 目錄 III 圖表目錄 V 第一章 前言 1 1.1 文獻回顧 1 1.2 研究動機 4 第二章 個案介紹和觀測資料分析 7 2.1 泰利颱風 7 2.2 杜蘇芮颱風 7 2.3 綜觀環境 8 2.4 小結 11 第三章 資料來源與研究方法 13 3.1 資料來源 13 3.2 WRF 模式簡介與設定 14 3.3 氣旋移除方法(TC-BOGUS) 16 3.4 實驗設計 17 第四章 數值模擬結果 19 4.1 CTRL組模擬結果 19 4.2 系集成員分析 20 4.3 杜蘇芮颱風敏感度實驗 24 4.4 小結 26 第五章 泰利颱風路徑北轉因素 28 5.1 杜蘇芮颱風之影響 30 5.2 副熱帶高壓勢力東退 31 5.3 北方高層槽東移 33 5.4 不同全球模式初始場對模擬之影響 34 5.5 小結 39 第六章 結論與未來展望 43 參考文獻 47 附錄 50

    Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884–2903.

    Brand, S., 1970: Interaction of binary cyclones of the western North Pacific Ocean. J. Appl. Meteor., 9, 433–441.

    Carr, L. E., III, and R. L. Elsberry, 2000: Dynamical tropical cyclone track forecast errors. Part I: Tropical Region Error Sources. Wea. Forecasting, 15, 662–681.

    Cheung, K. K.W., L.-R. Huang, and C.-S. Lee, 2008: Characteristics of rainfall during tropical cyclone periods in Taiwan. Nat. Hazards Earth Syst. Sci., 9, 1463–1474.

    Evensen G., 1994: Sequential data assimilation with a nonlinear quasi-
    geostrophic model using Monta Carlo methods to forecast error statistics. J Geophys Res. 99, 10143–10162.

    Epstein E. S., 1969: Stochastic dynamic prediction. Tellus, Ser. A, 21, 739–759, 1969.

    Froude, L. S. R., L. Bengtsson, and K. I. Hodges, 2007b: The prediction of extratropical storm tracks by the ECMWF and NCEP ensemble prediction systems. Mon. Wea. Rev., 135, 2545–2567.

    Fujiwhara, S., 1923: On the growth and decay of vortical systems. Quart. J. Roy. Meteor. Soc., 49,75-104.

    Hamill, T. M., C. Snyder, and J. S. Whitaker, 2003: Ensemble forecasts and the properties of flow-dependent analysis-error covariance singular vectors. Mon. Wea. Rev., 131, 1741–1758.

    Hsiao, L. F., C. S. Liou, T. C. Yeh, Y. R. Guo, D. S. Chen, K.

    N. Huang, C. T. Terng, and J. H. Chen, 2010: A vortex relocation scheme for tropical cyclone initialization in advanced research WRF. Mon. Wea. Rev., 138, 3298–3315.

    Huang, K.-C., and C.-C. Wu, 2018: The impact of idealized terrain on upstream tropical cyclone track. J. Atmos. Sci., 75, 3887–3910.

    Huang, Y.-H., C.-C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 1708–1727,

    Jian, G.-J., and C.-C. Wu, 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136, 598–615.

    Korfe, N. G., and B. A. Colle, 2018: Evaluation of cool-season extratropical cyclones in a multimodel ensemble for eastern North America and the western Atlantic Ocean. Wea. Forecasting, 33, 109–127.

    Lander, M. A., and G. J. Holland, 1993: On the interaction of tropical-cyclone-scale vortices. I: Observation. Quart. J. Roy. Meteor. Soc., 119, 1347–1361.

    Liu, H.-Y., and Z.-M. Tan, 2016: A dynamical initialization scheme for binary tropical cyclones. Mon. Wea. Rev., 144, 4787–4803.

    Qian, C.-H., F. Zhang, B. W. Green, J. Zhang, and X.-Q. Zhou, 2013: Probabilistic evaluation of the dynamics and prediction of Supertyphoon Megi (2010). Wea. Forecasting, 28, 1562– 1577.

    Schlatter, T. W., F. H. Carr, R. H. Langland, R. E. Carbone, N. A. Crook, R. W. Daley, J. C. Derber, and S. L. Mullen, 1999: A five-year plan for research related to the assimilation of meteorological data. NCAR Tech Note 443, 45.

    Tang, C. K., and J. C. L. Chan, 2014: Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 140, 1578–1589.

    Tu, J.-Y., C. Chou, and P.-S. Chu, 2009: The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific–East Asian climate change. J. Climate, 22, 3617–3628.

    Wu, C.-C., 2001: Numerical simulation of Typhoon Gladys(1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon. Wea. Rev., 129, 1533-1549.

    Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons affecting Taiwan – Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 67-80.

    Wu, C.-C., T.-H. Li, and Y.-H. Hung, 2015: Influence of mesoscale topography on tropical cyclone tracks: Further examination of the channeling effect. J. Atmos. Sci., 72, 3032-3050.

    Wang, S.-Y., and T.-C. Chen, 2008: Measuring East Asian summer monsoon rainfall contributions by different weather systems over Taiwan. J. Appl. Meteor. Climatol., 47, 2068–2080

    Yumoto M, Matsuura T (2001) Interdecadal variability of tropical cyclone activity in the western North Pacific. J Meteorol Soc Japan 79: 23–35

    Yang, C.-C., C.-C. Wu, K.-H. Chou, and C.-Y. Lee, 2008: Binary interaction between Typhoons Fengshen (2002) and Fungwong (2002) based on the potential vorticity diagnosis. Mon. Wea. Rev., 136, 4593–4611.

    Zhang, W., Xie, L., Liu, B., Guan, C, 2017: An Integrated Approach for Assessing Tropical Cyclone Track and Intensity Forecasts. Wea. Forecasting, 32, 969–990.

    下載圖示
    QR CODE