簡易檢索 / 詳目顯示

研究生: 陳瀅翔
Chen, Ying-Hsiang
論文名稱: 硫代硫酸鈉在慢性腎臟病與腎血管性高血壓之治療及保護效果
The Therapeutic and Preventive Effects of Sodium Thiosulfate in Chronic Kidney Disease and Renovascular Hypertension in Rats
指導教授: 鄭劍廷
Chien, Chiang-Ting
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 89
中文關鍵詞: 硫代硫酸鈉慢性腎臟疾病腎血管性高血壓自由基
英文關鍵詞: sodium thiosulfate, chronic kidney disease, renal hypertension, free radical
DOI URL: http://doi.org/10.6345/THE.NTNU.SLS.007.2019.D01
論文種類: 學術論文
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 慢性腎臟疾病(Chronic kidney disease,CKD)是一種持續腎功能喪失的疾病,通常在初期沒有顯著的症狀,當發現罹患疾病時,其損傷可能已無法逆轉及修復。腎血管性高血壓(Renovascular hypertension,RVHT)之發病機制主要為供給腎臟的動脈狹窄,造成腎素-血管張力素-醛固酮系統(Renin-angiotensin-aldosterone system,RAAS)異常,導致高血壓,進一步對腎功能造成損傷。兩者皆會引起腎臟功能異常及損傷。
    硫代硫酸鈉(Sodium thiosulfate,STS)是目前在人體醫學上已使用在治療氰化物中毒和預防鈣化的藥物,根據先前研究表示,硫代硫酸鈉具有抗氧化、減緩氧化壓力之功能,能夠有效降低自由基的累積,不僅減少細胞釋放過氧化氫,還能保留超氧化物歧化酶的活性,甚至可減低血管張力素II誘導的腎臟損害和尿蛋白。然而,硫代硫酸鈉是否能夠有效降低慢性腎病便和腎血管性高血壓造成之腎損害,目前尚未證實。
    本實驗的目的,針對硫代硫酸鈉目前臨床的研究成果用於兩種腎臟疾病的治療評估。於Wistar大鼠上手術誘發類似於慢性腎臟疾病與腎血管性高血壓的疾病模式和傷害,並且給予腹腔注射硫代硫酸鈉,評估硫代硫酸鈉是否有改善疾病所造成的損傷。同時參考衛生福利部全國解毒劑儲備網氰化物中毒之硫代硫酸鈉靜脈注射劑量,成人靜脈注射劑量12.5 g,經換算後0.2 g/kg,再以各劑量濃度測試硫代硫酸鈉最佳抗氧化之劑量,經測試硫代硫酸鈉抗氧化能力之結果表明,0.2 g/kg與0.1 g/kg之抗氧化能力相當,所以實驗治療劑量選擇低於衛生福利部之安全劑量上限,採用0.1 g/kg (最高劑量之1/2)做為治療劑量。本研究結果顯示,在慢性腎臟疾病與腎血管性高血壓動物模式,硫代硫酸鈉確實能降低血液中自由基的含量與腎臟組織氧化產物4-HNE的表現,減少腎臟中性白血球浸潤腎臟組織、減緩腎臟纖維化程度、降低Bax/Bcl-2 比值而減少腎臟皮質與髓質之細胞凋亡且有效改善慢性腎臟疾病所導致的血清尿素氮(Blood urine nitrogen,BUN)和血清肌酸酐(Creatinine)。這些結果表明,硫代硫酸鈉透過抗氧化、抗纖維化與抗凋亡效應可改善慢性腎臟疾病與腎血管性高血壓造成之腎損傷。在未來臨床應用治療,具有潛在的改善效果。
    關鍵字:硫代硫酸鈉、慢性腎臟疾病、腎血管性高血壓、自由基

    Chronic kidney disease (CKD) is a gradual process of renal dysfunction. CKD is divided into five stages by the efficacy of renal function. In the early stages of CKD, it is hard to identify the disease induction for the uncertain signs or symptoms. Moreover, patients are usually informed about coming down with CKD while the kidney damage has resulted in renal dysfunction and irreversible consequences. On the other hand, the main pathogenesis of renovascular hypertension (RH) is due to the production of arterial stenosis. Arterial stenosis leads to activation abnormalities of the renin-angiotensin-aldosterone system (RAAS), which can result in renal hypertension. Additionally, renal hypertension always causes serious damage to kidneys. Both of these two diseases can lead to kidney dysfunction and damage.
    Sodium thiosulfate (STS) is currently applied to treat cyanide poisoning and to prevent calcification in clinical trials. According to previous studies, STS is a developed antioxidant which can retard oxidative stress. STS can effectively reduce the accumulation of free radicals by the action of decreasing the release of hydrogen peroxide and retaining the activity of superoxide dismutase.
    In this study, we induced two kinds of disease models which are similar to CKD and RH diseases in Wistar rats. In addition, intraperitoneal administration of STS is applied to evaluate whether STS can improve renal damage, renal dysfunction and systemic hypertension in these chronic kidney injury models.
    We first evaluated the dosage of STS by the antioxidant activity evaluation. We adapted the dosage of STS at the value of 0.1 g/kg which is a safe dosage lower the maximal dose 0.2 g/kg. Additionally, the antioxidant activity was similar between 0.1 g/kg and 0.2 g/kg according to our data. Our results further showed that STS can actually reduce the amount of free radicals in blood, the level of renal 4 HNE lipid peroxidation expression, the degree of neutrophil infiltration into the kidney, the degree of renal fibrosis, Bax/Bcl-2 ratio, renal apoptosis formation and effectively depress the elevated level of blood urine nitrogen (BUN) and creatinine in the 5/6 kidney removal induced CKD and RVHT models. In conclusion, our results suggest that STS treatment may be a potentially therapeutic strategy in ameliorating CKD and RH through the action of antioxidant, anti-fibrosis and anti-apoptosis.
    Key Words:sodium thiosulfate,chronic kidney disease, renal hypertension, free radical

    目錄 1 中文摘要 4 Abstract 6 縮寫表 8 1.緒論 9 1-1.慢性腎臟疾病 9 1-2.腎血管性高血壓 10 1-3.硫代硫酸鈉 10 1-4.自由基 11 1-5.研究的重要性與目的 11 2.研究材料與方法 13 2-1.實驗動物 13 2-2.實驗動物分組 13 2-3.慢性腎臟疾病動物模式的誘發 14 2-4.腎血管性高血壓動物模式的誘發 15 2-5.實驗動物處理 16 2-6.血壓測定 17 2-7.自由基測定 17 2-8.病理組織切片免疫化學染色 18 2-9.Western Blot 21 2-10.組織氧化壓力、細胞凋亡(Apoptosis)檢測 22 2-11.血液生理數值檢測 23 2-12.尿液生理數值檢測 24 2-13.統計分析 24 3.實驗結果 25 3-1. 硫代硫酸鈉在活體外分析不同劑量下的抗氧化能力 25 3-2. 5/6腎臟去除手術後老鼠誘發慢性腎臟病血流之變化 26 3-3. 5/6腎臟去除手術後誘發大鼠慢性腎臟病之平均動脈血壓變化 27 3-4. 5/6腎臟去除手術後大鼠誘發慢性腎臟病之血液自由基含量變化 27 3-5. 5/6腎臟去除手術後大鼠誘發慢性腎臟病之尿液生理數值變化 28 3-6. 5/6腎臟去除手術後大鼠誘發慢性腎臟病之血液生理數值變化 28 3-7. H&E染色評估腎臟組織白血球浸潤 29 3-8. Masson染色評估腎臟組織纖維化 30 3-9. TUNEL染色評估腎臟皮質組織細胞凋亡 30 3-10. TUNEL染色評估腎臟髓質組織細胞凋亡 31 3-11. 西方墨點法檢測各組4HNE的相對表現量 32 3-12. 4HNE組織免疫化學染色評估腎臟組織氧化壓力 32 3-13. 西方墨點法檢測各組Bax、Bcl-2的相對表現量 33 3-14. Bax組織免疫化學染色評估腎臟組織促進細胞凋亡因子 34 3-15. Bcl-2組織免疫化學染色評估腎臟組織抗細胞凋亡因子 34 3-16. 西方墨點法檢測各組PARP的相對表現量 35 3-17. 雙腎動脈狹窄手術後大鼠誘發腎血管性高血壓血流之變化 36 3-18. 雙腎動脈狹窄手術後大鼠誘發腎血管性高血壓之平均動脈血壓變化 36 3-19. 雙腎動脈狹窄手術後大鼠誘發腎血管性高血壓之血液自由基含量變化 37 3-20. 雙腎動脈狹窄手術後大鼠誘發腎血管性高血壓之尿液生理數值變化 38 3-21. 雙腎動脈狹窄手術後大鼠誘發腎血管性高血壓之血液生理數值變化 38 3-22. H&E染色評估腎臟組織白血球浸潤 39 3-23. Masson染色評估腎臟組織纖維化 40 3-24. TUNEL染色評估腎臟皮質組織細胞凋亡 41 3-25. TUNEL染色評估腎臟髓質組織細胞凋亡 41 3-26. 西方墨點法檢測各組4HNE的相對表現量 42 3-27. 4HNE組織免疫化學染色評估腎臟組織氧化壓力 43 3-28. 西方墨點法檢測各組Bax、Bcl-2的相對表現量 43 3-29. Bax組織免疫化學染色評估腎臟組織促進細胞凋亡因子 45 3-30. Bcl-2組織免疫化學染色評估腎臟組織抗細胞凋亡因子 45 3-31. 西方墨點法檢測各組PARP的相對表現量 46 4.討論 47 5.結論 51 6.參考資料 52 7.圖與表格 58

    1. Coresh J, Selvin E, Stevens LA, et al.: Prevalence of chronic kidney disease in the united states. JAMA 2007, 298(17):2038-2047.
    2. Romagnani P, Remuzzi G, Glassock R, Levin A, Jager KJ, Tonelli M, Massy Z, Wanner C, Anders H-J: Chronic kidney disease. Nature Reviews Disease Primers 2017, 3:17088.
    3. Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, Carter A, Casey DC, Charlson FJ, Chen AZ et al: Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet 2016, 388(10053):1545-1602.
    4. Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY-M, Yang C-W: Chronic kidney disease: global dimension and perspectives. The Lancet 2013, 382(9888):260-272.
    5. Busra C, lt, sup, gt, lt, sup, gt, Gozde U, lt, sup et al: Effects of Human Placental Amnion Derived Mesenchymal Stem Cells on Proliferation and Apoptosis Mechanisms in Chronic Kidney Disease in the Rat. International Journal of Stem Cells 0000, 0(0).
    6. Gogusev J, Duchambon P, Hory B, Giovannini M, Goureau Y, Sarfati E, Drüeke TB: Depressed expression of calcium receptor in parathyroid gland tissue of patients with hyperparathyroidism. Kidney International 1997, 51(1):328-336.
    7. Brown AJ, Ritter CS, Finch JL, Slatopolsky EA: Decreased calcium-sensing receptor expression in hyperplastic parathyroid glands of uremic rats: Role of dietary phosphate. Kidney International 1999, 55(4):1284-1292.
    8. Cunningham J, Locatelli F, Rodriguez M: Secondary Hyperparathyroidism: Pathogenesis, Disease Progression, and Therapeutic Options. Clinical Journal of the American Society of Nephrology 2011, 6(4):913-921.
    9. Kumar R, Thompson JR: The Regulation of Parathyroid Hormone Secretion and Synthesis. Journal of the American Society of Nephrology 2011, 22(2):216-224.
    10. Yano S, Sugimoto T, Tsukamoto T, Chihara K, Kobayashi A, Kitazawa S, Maeda S, Kitazawa R: Association of decreased calcium-sensing receptor expression with proliferation of parathyroid cells in secondary hyperparathyroidism. Kidney International 2000, 58(5):1980-1986.
    11. Basile DP, Anderson MD, Sutton TA: Pathophysiology of acute kidney injury. Comprehensive Physiology 2012, 2(2):1303-1353.
    12. Hemmingsen C, Staun M, Lewin E, Egfjord M, Olgaard K: Calcium metabolic changes and calbindin-D in experimental hypertension. J Hypertens 1994, 12(8):901-907.
    13. Kageyama Y, Suzuki H, Arima K, Saruta T: Oral calcium treatment lowers blood pressure in renovascular hypertensive rats by suppressing the renin-angiotensin system. Hypertension 1987, 10(4):375.
    14. Paravicini TM, Touyz RM: Redox signaling in hypertension. Cardiovascular research 2006, 71(2):247-258.
    15. Fariba S, Nooshin D, Ali J: New Insights Into Pathophysiology, Diagnosis, and Treatment of Renovascular Hypertension. Iranian Journal of Kidney Diseases; Vol 11, No 2 (2017): March 2017.
    16. Hall AH, Dart R, Bogdan G: Sodium Thiosulfate or Hydroxocobalamin for the Empiric Treatment of Cyanide Poisoning? Annals of Emergency Medicine 2006, 49(6):806-813.
    17. Cicone JS, Petronis JB, Embert CD, Spector DA: Successful treatment of calciphylaxis with intravenous sodium thiosulfate. American Journal of Kidney Diseases 2004, 43(6):1104-1108.
    18. Yonova DH, Vazelov ES, Trendafilov II, Stoinova VV, Nedevska MT, Antonov SA: First Impressions of Cardiovascular Calcification Treatment in Hemodialysis Patients with a New Dialysis Fluid Containing Sodium Thiosulphate (STS). The International Journal of Artificial Organs 2014, 37(4):308-314.
    19. Ravindran S, Boovarahan SR, Shanmugam K, Vedarathinam RC, Kurian GA: Sodium Thiosulfate Preconditioning Ameliorates Ischemia/Reperfusion Injury in Rat Hearts Via Reduction of Oxidative Stress and Apoptosis. Cardiovascular Drugs and Therapy 2017, 31(5):511-524.
    20. Bijarnia RK, Bachtler M, Chandak PG, van Goor H, Pasch A: Sodium Thiosulfate Ameliorates Oxidative Stress and Preserves Renal Function in Hyperoxaluric Rats. PLoS ONE 2015, 10(4):e0124881.
    21. Snijder PM, Frenay A-RS, Koning AM, Bachtler M, Pasch A, Kwakernaak AJ, van den Berg E, Bos EM, Hillebrands J-L, Navis G et al: Sodium thiosulfate attenuates angiotensin II-induced hypertension, proteinuria and renal damage. Nitric Oxide 2014, 42:87-98.
    22. Malbos S, Urena-Torres P, Cohen-Solal M, Trout H, Lioté F, Bardin T, Ea H-K: Sodium thiosulphate treatment of uraemic tumoral calcinosis. Rheumatology 2014, 53(3):547-551.
    23. Farese S, Stauffer E, Kalicki R, Hildebrandt T, Frey BM, Frey FJ, Uehlinger DE, Pasch A: Sodium Thiosulfate Pharmacokinetics in Hemodialysis Patients and Healthy Volunteers. Clinical Journal of the American Society of Nephrology 2011, 6(6):1447.
    24. Chung SD, Lai TY, Chien CT, Yu HJ: Activating Nrf-2 Signaling Depresses Unilateral Ureteral Obstruction-Evoked Mitochondrial Stress-Related Autophagy, Apoptosis and Pyroptosis in Kidney. PLoS ONE 2012, 7(10):e47299.
    25. Yang C-C, Yao C-A, Yang J-C, Chien C-T: Sialic Acid Rescues Repurified Lipopolysaccharide-Induced Acute Renal Failure via Inhibiting TLR4/PKC/gp91-Mediated Endoplasmic Reticulum Stress, Apoptosis, Autophagy, and Pyroptosis Signaling. Toxicological Sciences 2014, 141(1):155-165.
    26. Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD: Free radicals and antioxidants in human health: current status and future prospects. The Journal of the Association of Physicians of India 2004, 52:794-804.
    27. Lin S-L, Chen Y-M, Chien C-T, Chiang W-C, Tsai C-C, Tsai T-J: Pentoxifylline Attenuated the Renal Disease Progression in Rats with Remnant Kidney. Journal of the American Society of Nephrology 2002, 13(12):2916-2929.
    28. Yeh C-H, Hsu S-P, Yang C-C, Chien C-T, Wang N-P: Hypoxic preconditioning reinforces HIF-alpha-dependent HSP70 signaling to reduce ischemic renal failure-induced renal tubular apoptosis and autophagy. Life Sciences 2010, 86(3):115-123.
    29. Nishi EE, Lopes NR, Gomes GN, Perry JC, Sato AYS, Naffah-Mazzacoratti MG, Bergamaschi CT, Campos RR: Renal denervation reduces sympathetic overactivation, brain oxidative stress, and renal injury in rats with renovascular hypertension independent of its effects on reducing blood pressure. Hypertension Research 2018.
    30. Boshra V, Abbas Amr M: Effects of peripherally and centrally applied ghrelin on the oxidative stress induced by renin angiotensin system in a rat model of renovascular hypertension. In: Journal of Basic and Clinical Physiology and Pharmacology. vol. 28; 2017: 347.
    31. Huang K-C, Yang C-C, Lee K-T, Chien C-T: Reduced hemodialysis-induced oxidative stress in end-stage renal disease patients by electrolyzed reduced water. Kidney International 2003, 64(2):704-714.
    32. Tsai WH, Wu CH, Yu HJ, Chien CT: l‐Theanine inhibits proinflammatory PKC/ERK/ICAM‐1/IL‐33 signaling, apoptosis, and autophagy formation in substance P‐induced hyperactive bladder in rats. Neurourology and Urodynamics 2016, 36(2):297-307.
    33. Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen Y-R, Harrison DG, Bhatnagar A, American Heart Association Council on Basic Cardiovascular S: Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association. Circulation research 2016, 119(5):e39-e75.
    34. Asplin JR, Donahue SE, Lindeman C, Michalenka A, Strutz KL, Bushinsky DA: Thiosulfate Reduces Calcium Phosphate Nephrolithiasis. Journal of the American Society of Nephrology 2009, 20(6):1246-1253.
    35. Snijder PM, Frenay AR, de Boer RA, Pasch A, Hillebrands JL, Leuvenink HGD, van Goor H: Exogenous administration of thiosulfate, a donor of hydrogen sulfide, attenuates angiotensin II-induced hypertensive heart disease in rats. British Journal of Pharmacology 2015, 172(6):1494-1504.
    36. Thomas JE, McGinnis G: Safety of intraventricular sodium nitroprusside and thiosulfate for the treatment of cerebral vasospasm in the intensive care unit setting. Stroke 2002, 33(2):486-492.
    37. Hayden MR, Tyagi SC: Vasa vasorum in plaque angiogenesis, metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: a malignant transformation. Cardiovasc Diabetol 2004, 3.
    38. Byon CH, Javed A, Dai Q, Kappes JC, Clemens TL, Darley-Usmar VM, McDonald JM, Chen Y: Oxidative Stress Induces Vascular Calcification through Modulation of the Osteogenic Transcription Factor Runx2 by AKT Signaling. Journal of Biological Chemistry 2008, 283(22):15319-15327.
    39. Gáspár S, Niculiţe C, Cucu D, Marcu I: Effect of calcium oxalate on renal cells as revealed by real-time measurement of extracellular oxidative burst. Biosensors and Bioelectronics 2010, 25(7):1729-1734.
    40. Fridovich I: Superoxide Anion Radical (O·̄2), Superoxide Dismutases, and Related Matters. Journal of Biological Chemistry 1997, 272(30):18515-18517.
    41. Nath KA, Norby SM: Reactive oxygen species and acute renal failure. The American Journal of Medicine 2000, 109(8):665-678.
    42. Li CY, Deng YL, Sun BH: Taurine protected kidney from oxidative injury through mitochondrial-linked pathway in a rat model of nephrolithiasis. Urological Research 2009, 37(4):211-220.
    43. Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, Jarrot P-A, Kaplanski G, Le Quintrec M, Pernin V et al: Endothelium structure and function in kidney health and disease. Nature Reviews Nephrology 2019.
    44. Faubel S, Lewis EC, Reznikov L, Ljubanovic D, Hoke TS, Somerset H, Oh D-J, Lu L, Klein CL, Dinarello CA et al: Cisplatin-Induced Acute Renal Failure Is Associated with an Increase in the Cytokines Interleukin (IL)-1β, IL-18, IL-6, and Neutrophil Infiltration in the Kidney. Journal of Pharmacology and Experimental Therapeutics 2007, 322(1):8.
    45. Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM, Rubin CJ, Zhao W, Olsen SH, Klinker M et al: Netting Neutrophils Induce Endothelial Damage, Infiltrate Tissues, and Expose Immunostimulatory Molecules in Systemic Lupus Erythematosus. The Journal of Immunology 2011:1100450.
    46. Mehrotra P, Collett JA, McKinney SD, Stevens J, Ivancic CM, Basile DP: IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion: compensatory role of natural killer cells in athymic rats. American journal of physiology Renal physiology 2017, 312(3):F385-F397.
    47. 中川 俊: 慢性腎臓病に伴う尿細管障害及び間質線維化のバイオマーカーの同定. YAKUGAKU ZASSHI 2017, 137(11):1355-1360.

    無法下載圖示 本全文未授權公開
    QR CODE