簡易檢索 / 詳目顯示

研究生: 呂俊逸
Lu, Chun-Yi
論文名稱: 近岸抬升對臺灣東部黑潮生態系的影響
Effects of nearshore uplift on Kuroshio ecosystem of eastern Taiwan
指導教授: 陳仲吉
Chen, Chung-Chi
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 62
中文關鍵詞: 黑潮近岸抬升無機營養鹽N/P比值超微型浮游生物中尺度渦流
英文關鍵詞: Kuroshio, nearshore uplift, inorganic nutrients, N/P ratio, picoplankton, mesoscale eddy
DOI URL: http://doi.org/10.6345/NTNU201900423
論文種類: 學術論文
相關次數: 點閱:84下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 黑潮是北太平洋之西方邊界流,除經由底層向上擴散外,其近岸抬升為淺層無機營養鹽的另一來源,故抬升的強弱可能影響此海域生態系之生地化反應。本研究利用OKTV計畫於2012年9月至2014年9月間,沿著臺灣東部23.75oN的黑潮測線,量測並探討黑潮近岸抬升的原因與其對黑潮生態系的影響。結果顯示,黑潮的流速、厚度、寬度及通量變化相當大,但其抬升強度主要與黑潮通量和其最快流速發生的深度和位置呈現顯著正相關,主因可能與局部通量改變使得渦度發生變化,為使渦度守恆,進而造成等密度線往近岸抬升之現象有關。另外黑潮表層100公尺以淺之無機營養鹽、葉綠素甲平均濃度亦與抬升強度呈現顯著正相關;雖然顆粒性有機碳濃度與抬升強度間並無相關,但其與葉綠素甲濃度有顯著正相關。而黑潮表層100公尺以淺,其超微型浮游植物組成主要以原核綠球藻(Prochlorococcus;Pro)為主,其次為聚球藻(Synechococcus;Syn),再者為真核超微型浮游植物(Picoeukaryotes;PiEu)。就超微型浮游植物的豐度和組成差異以及異營性細菌的豐度變化與無機營養鹽濃度的關係而言,其中只有真核超微型浮游植物的平均豐度與硝酸鹽濃度呈現顯著正相關;而聚球藻在總水層(100公尺以淺)、表層(5公尺)和中層(50公尺)之組成比例〔Syn /(Syn+Pro+PiEu)〕則與N/P比值呈現顯著正相關,這種組成比例的改變可能與N/P比值的改變造成其潛在捕食者的豐度變化有關;但原核綠球藻的組成比例與N/P比值卻呈現顯著負相關,其組成比例的改變可能與其和聚球藻的交互作用有關。此外,異營性細菌的豐度亦與N/P比值呈現顯著負相關,且與原核綠球藻的平均豐度呈顯著正相關。若以海平面高度的變化作為間接證據,結果顯示此海域N/P比值的變化與海平面高度有顯著關聯,故此結果建議此海域N/P比值的變化應與黑潮東側的中尺度渦流(Mesoscale Eddy)有關。浮游生物的豐度與組成是影響大洋生態系變化的關鍵因素,研究結果建議此海域浮游生物的豐度與組成變化,可能受到黑潮近岸抬升強度的影響。此外,黑潮東側的中尺度渦流亦可能影響本海域生態系,值得後續研究。

    Kuroshio is the western boundary current of the North Pacific Ocean. Apart from the upward diffusion through the bottom layer, its nearshore uplift is another source of surface inorganic nutrients. Therefore, the uplift intensity may affect the biogeochemical response of the Kuroshio ecosystem. To explore the impact of the Kuroshio nearshore uplift on the ecosystem, hydrographic data along the transect line at 23.75oN of the OKTV program were measured between September 2012 to September 2014. The results show that the flow rate, thickness, width and fluxes of the Kuroshio varied temporally. The nearshore uplift intensity is significantly related to the fluxes and distance of the fastest velocity of the Kuroshio. This may be due to that its fluxes change locally in the upper layer, which causes vorticity imbalance. To maintain vorticity balance, the isopycnic lines steepen and uplift to the nearshore. The significant positive linear relationships are also observed between the uplift intensity and averaged values of inorganic nutrients or chlorophyll a over the 100m of water column. No significant pattern was evidenced between particulate organic carbon concentration and uplift intensity, but it is significantly positive correlated with chlorophyll a concentration. The major component of picophytoplankton is Prochlorococcus(Pro) and followed by Synechococcus (Syn) and Picoeukaryotes (PiEu) in the surface 100m of water column. Among all, only the average abundance of Picoeukaryotes is significantly correlated with nitrate concentration. Surprisingly, the abundance ratio of Synechococcus to (Syn+Pro+PiEu) in whole water column(above 100m)、surface(5m) and middle(50m) layers are positively related with the N/P molar ratio. This may be associated with the abundance of its potential predators which varied with the N/P molar ratio. The opposite trend is however found between the ratio of Prochlorococcus /(Syn+Pro+ PiEu) to the N/P ratio. The inverse trends between Prochlorococcus and Synechococcus to the N/P molar ratio may cause by interaction between these two picophytoplankton. Furthermore, the abundance of heterotrophic bacteria are negatively and positively related to the N/P ratio and the abundance of Prochlorococcus, respectively. The variant of the N/P ratio may be associated with the changing of the sea level height caused by mesoscale eddy on the eastern boundary of the Kuroshio. Overall, the results suggest that the nearshore uplift of the Kuroshio has significant effect on its pelagic ecosystem. In addition, the mesoscale eddy on the eastern boundary of the Kuroshio may also affect this ecosystem, and which is worthy of further study.

    致謝 i 摘要 ii Abstract iv 表目錄 viii 圖目錄 ix 第一章、前言 1 1.1黑潮的水文環境 1 1.2抬升現象 1 1.3臺灣東部黑潮的抬升現象 2 1.4臺灣東部黑潮的超微型浮游生物 3 1.5研究目的 4 第二章、材料方法 5 2.1研究區域與採樣 5 2.2黑潮的物理參數 5 2.3黑潮的無機營養鹽濃度測定 6 2.4黑潮的生物參數測定 7 2.5統計分析與繪圖 8 第三章、結果 9 3.1黑潮物理性質及抬升強度 9 3.2無機營養鹽濃度與抬升面積 10 3.3海平面高度與N/P比值 10 3.4葉綠素甲和顆粒性有機碳與抬升面積 11 3.5超微型浮游生物與無機營養鹽 11 第四章、討論 15 4.1臺灣東部黑潮的近岸抬升與化學水文的變化 15 4.2影響黑潮葉綠素甲與顆粒性有機碳濃度的主因 18 4.3臺灣東部黑潮海域超微型浮游生物的變化 19 第五章、結論 22 參考資料 24

    一、中文文獻
    梁至希. (2012). 東沙環礁潟湖異營性細菌生產力的時空變化及其控制因子的探討. (碩士), 國立臺灣海洋大學, 基隆市.
    郭怡君. (2013). 台灣附近海域對西行颱風通過反應之數值模擬研究. (博士), 國立臺灣大學, 台北市.

    二、英文文獻
    Agawin, N. S., Duarte, C., Agustí, S., & Vaqué, D. (2004). Effect of N:P ratios on response of Mediterranean picophytoplankton to experimental nutrient inputs. Aquatic Microbial Ecology, 34, 57-67.
    Bibby, T. S., & Moore, C. M. (2011). Silicate:nitrate ratios of upwelled waters control the phytoplankton community sustained by mesoscale eddies in sub-tropical North Atlantic and Pacific. Biogeosciences, 8(3), 657-666.
    Campbell, L., Landry, M. R., Constantinou, J., Nolla, H. A., Brown, S., Liu, H., & Caron, D. A. (1998). Response of microbial community structure to environmental forcing in the Arabian Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 45(10-11), 2301-2325.
    Chang, M.-H., Jan, S., Mensah, V., Andres, M., Rainville, L., Yang, Y. J., & Cheng, Y.-H. (2018). Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements. Deep Sea Research Part I: Oceanographic Research Papers, 131, 1-15.
    Chen, C.-C., Jan, S., Kuo, T.-H., & Li, S.-Y. (2017). Nutrient flux and transport by the Kuroshio east of Taiwan. Journal of Marine Systems, 167, 43-54.
    Chen, C.-T. A. (1996). The Kuroshio Intermediate Water is the major source of nutrients on the East China Sea continental shelf. Oceanologica Acta, 19(5), 523-527.
    Chern, C.-S., & Wang, J. (2005). Interactions of Mesoscale Eddy and Western Boundary Current: A Reduced-Gravity Numerical Model Study. Journal of Oceanography, 61(2), 271-282.
    Chiang, K.-P., Shiah, F. K., & Gong, G. C. (1997). Distribution of summer diatom assemblages in and around a local upwelling in the East China Sea northeast of Taiwan. Botanical Bulletin- Academia Sinica Taipei, 38(2), 121-129.
    Chung, C.-C., Gong, G., & Hung, C.-C. (2012). Effect of Typhoon Morakot on microphytoplankton population dynamics in the subtropical Northwest Pacific. Marine Ecology Progress Series, 448, 39-49.
    Doblin, M. A., Petrou, K., Sinutok, S., Seymour, J. R., Messer, L. F., Brown, M. V., Norman, L., Everett, J. D., McInnes, A. S., Ralph, P. J., Thompson, P. A., & Hassler, C. S. (2016). Nutrient uplift in a cyclonic eddy increases diversity, primary productivity and iron demand of microbial communities relative to a western boundary current. PeerJ:e1973, 4.
    Egge, J. K., & Heimdal, B. R. (1994). Blooms of phytoplankton including Emiliania huxleyi (Haptophyta). Effects of nutrient supply in different N : P ratios. Sarsia, 79(4), 333-348.
    Engel, A., Harlay, J., Piontek, J., & Chou, L. (2012). Contribution of combined carbohydrates to dissolved and particulate organic carbon after the spring bloom in the northern Bay of Biscay (North-Eastern Atlantic Ocean). Continental Shelf Research, 45, 42-53.
    Fuhrman, J., Sleeter, T., Carlson, C., & Proctor, L. (1989). Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Marine Ecology Progress Series, 57, 207-217.
    Gong, G.-C., Lee Chen, Y.-L., & Liu, K.-K. (1996). Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications in nutrient dynamics. Continental Shelf Research, 16(12), 1561-1590.
    Grasshoff, K., Kremling, K., & Ehrhardt, M. (2009). Methods of seawater analysis: John Wiley & Sons.
    Guo, C., Liu, H., Zheng, L., Song, S., Chen, B., & Huang, B. (2014). Seasonal and spatial patterns of picophytoplankton growth, grazing and distribution in the East China Sea. Biogeosciences, 11(7), 1847-1862.
    Guo, X., Zhu, X. H., Wu, Q. S., & Huang, D. (2012). The Kuroshio nutrient stream and its temporal variation in the East China Sea. Journal of Geophysical Research: Oceans, 117(C1).
    Hirose, M., Katano, T., & Nakano, S.-I. (2007). Growth and grazing mortality rates of Prochlorococcus, Synechococcus and eukaryotic picophytoplankton in a bay of the Uwa Sea, Japan. Journal of Plankton Research, 30(3), 241-250.
    Hsin, Y.-C., Qiu, B., Chiang, T. L., & Wu, C. R. (2013). Seasonal to interannual variations in the intensity and central position of the surface Kuroshio east of Taiwan. Journal of Geophysical Research: Oceans, 118(9), 4305-4316.
    Hsin, Y.-C., Qu, T., & Wu, C.-R. (2010). Intra-seasonal variation of the Kuroshio southeast of Taiwan and its possible forcing mechanism. Ocean dynamics, 60(5), 1293-1306.
    Hsu, T.-W., Chou, M.-H., Chao, W.-T., & Liang, S.-J. (2018). Typhoon Effect on Kuroshio and Green Island Wakes: A Modelling Study. Atmosphere, 9(2).
    Jan, S., Yang, Y. J., Wang, J., Mensah, V., Kuo, T. H., Chiou, M. D., Chern, C. S., Chang, M. H., & Chien, H. (2015). Large variability of the Kuroshio at 23.75 N east of Taiwan. Journal of Geophysical Research: Oceans, 120(3), 1825-1840.
    Jiao, N., Yanhui Yang, Y., Koshikawa, H., & Masataka Watanabe, M. (2002). Influence of hydrographic conditions on picoplankton distribution in the East China Sea. Aquatic Microbial Ecology, 30(1), 37-48.
    Johns, W. E., Lee, T. N., Zhang, D., Zantopp, R., Liu, C.-T., & Yang, Y. (2001). The Kuroshio East of Taiwan: Moored Transport Observations from the WOCE PCM-1 Array. Journal of Physical Oceanography, 31(4), 1031-1053.
    Kashino, Y., España, N., Syamsudin, F., Richards, K. J., Jensen, T., Dutrieux, P., & Ishida, A. (2009). Observations of the North Equatorial Current, Mindanao Current, and Kuroshio current system during the 2006/07 El Niño and 2007/08 La Niña. Journal of Oceanography, 65(3), 325-333.
    Kirchman, D., Keil, R., Simon, M., & Welschmeyer, N. (1993). Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 40(5), 967-988.
    Kodama, T., Shimizu, Y., Ichikawa, T., Hiroe, Y., Kusaka, A., Morita, H., Shimizu, M., & Hidaka, K. (2014). Seasonal and spatial contrast in the surface layer nutrient content around the Kuroshio along 138°E, observed between 2002 and 2013. Journal of Oceanography, 70(6), 489-503.
    Kuo, Y.-C., & Chern, C.-S. (2011). Numerical study on the interactions between a mesoscale eddy and a western boundary current. Journal of Oceanography, 67(3), 263-272.
    Liu, K.-K., Pai, S.-C., & Liu, C.-T. (1988). Temperature-nutrient relationships in the Kuroshio and adjacent waters near Taiwan. ACTA Oceanographica Taiwanica, 17.
    Liu, K.-K., Tang, T. Y., Gong, G.-C., Chen, L.-Y., & Shiah, F.-K. (2000). Cross-shelf and along-shelf nutrient fluxes derived from flow fields and chemical hydrography observed in the southern East China Sea off northern Taiwan. Continental Shelf Research, 20(4-5), 493-523.
    Liu, Z., & Gan, J. (2012). Variability of the Kuroshio in the East China Sea derived from satellite altimetry data. Deep Sea Research Part I: Oceanographic Research Papers, 59, 25-36.
    Matear, R., Chamberlain, M. A., Sun, C., & Feng, M. (2013). Climate change projection of the Tasman Sea from an eddy resolving model. Journal of Geophysical Research: Oceans, 118(6), 1-16.
    Mensah, V., Jan, S., Chang, M. H., & Yang, Y. J. (2015). Intraseasonal to seasonal variability of the intermediate waters along the Kuroshio path east of Taiwan. Journal of Geophysical Research: Oceans, 120(8), 5473-5489.
    Morris, J. J., Kirkegaard, R., Szul, M. J., Johnson, Z. I., & Zinser, E. R. (2008). Facilitation of Robust Growth of <em>Prochlorococcus</em> Colonies and Dilute Liquid Cultures by “Helper” Heterotrophic Bacteria. Applied and Environmental Microbiology, 74(14), 4530.
    Mourino, B. (2016). Nutrient supply controls picoplankton community structure during three contrasting seasons in the northwestern Mediterranean Sea. Marine Ecology Progress Series, 543, 1-19.
    Nitani, H. (1972). Beginning of the Kuroshio, in Kuroshio-Its Pkysica aspects. 129-163.
    Oey, L.-Y., Wang, J., & Lee, M. A. (2018). Fish Catch Is Related to the Fluctuations of a Western Boundary Current. Journal of Physical Oceanography, 48(3), 705-721.
    Oke, P. R., & Middleton, J. H. (2001). Nutrient enrichment off Port Stephens: the role of the East Australian Current. Continental Shelf Research, 21(6-7), 587-606.
    Pai, S.-C., Jan, S., Ho, T.-Y., Liu, J.-Y., Chu, K.-S., Lee, W.-H., Wang, C.-Y., Huang, P.-Y., Hsu, H.-Y., & Yang, Y.-J. (2017). Using major nutrient concentrations to derive vertical movement of water masses in the coastal region of eastern Taiwan. Journal of Oceanography, 73(6), 711-723.
    Pai, S. C., Jan, S., Chu, K. S., Huang, P. Y., & Takahashi, M. M. (2015). Kuroshio or Oyashio - Sources of the 700 m deep ocean water off Hualien coast, eastern Taiwan. Deep Ocean Water Research, 15(3), 107-116.
    Partensky, J. F., & Blanchot, D. V. (1999). Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters : a review. In L. Charpy and A. Larkum (ed.), Marine cyanobacteria, 19, 457-475.
    Pedlosky, J. (1979). Geophysical fluid dynamics New York: Springer Verlag.
    Raven, J. A. (1998). The twelfth Tansley Lecture. Small is beautiful: the picophytoplankton. Functional Ecology, 12(4), 503-513.
    Rochford, D. (1975). Nutrient enrichment of east Australian coastal waters. II. Laurieton upwelling. Australian Journal of Marine and Freshwater Research, 26(2), 233-243.
    Rochford, D. (1984). Nitrates in eastern Australian coastal waters. Australian Journal of Marine and Freshwater Research, 35(4), 385-397.
    Rochford, D. (1991). 'Upwelling': Does it need a stricter Definition? Australian Journal of Marine and Freshwater Research, 42(1), 45-46.
    Roughan, M., & Middleton, J. H. (2002). A comparison of observed upwelling mechanisms off the east coast of Australia. Continental Shelf Research, 22(17), 2551-2572.
    Roughan, M., & Middleton, J. H. (2004). On the East Australian Current: variability, encroachment, and upwelling. Journal of Geophysical Research: Oceans, 109(C7).
    Roughan, M., Oke, P. R., & Middleton, J. H. (2003). A modeling study of the climatological current field and the trajectories of upwelled particles in the East Australian Current. Journal of Physical Oceanography, 33(12), 2551-2564.
    Rudnick, D. L., Jan, S., Centurioni, L., Lee, C. M., Lien, R.-C., Wang, J., Lee, D.-K., Tseng, R.-S., Kim, Y. Y., & Chern, C.-S. (2011). Seasonal and mesoscale variability of the Kuroshio near its origin. Oceanography, 24(4), 52-63.
    Shiah, F.-K., Gong, G.-C., & Chen, C.-C. (2003). Seasonal and spatial variation of bacterial production in the continental shelf of the East China Sea: possible controlling mechanisms and potential roles in carbon cycling. Deep Sea Research Part II: Topical Studies in Oceanography, 50(6), 1295-1309.
    Suttle, C. A., & Harrison, P. J. (1988). Ammonium and phosphate uptake rates, N: P supply ratios, and evidence for N and P limitation in some oligotrophic lakes. Limnology and Oceanography, 33(2), 186-202.
    Tortell, P. D., Maldonado, M. T., & Price, N. M. (1996). The role of heterotrophic bacteria in iron-limited ocean ecosystems. Nature, 383(6598), 330-332.
    Tsai, C. J., Jan, S., Mensah, V., Andres, M., Sanford, T. B., Lien, R. C., & Lee, C. M. (2015). Eddy-Kuroshio interaction processes revealed by mooring observations off Taiwan and Luzon. Geophysical Research Letters, 42(19), 8098-8105.
    Tsai, Y., Chern, C.-S., & Wang, J. (2008). Typhoon induced upper ocean cooling off northeastern Taiwan. Geophysical Research Letters, 35, L14605.
    van den Engh, G. J., Doggett, J. K., Thompson, A. W., Doblin, M. A., Gimpel, C. N. G., & Karl, D. M. (2017). Dynamics of Prochlorococcus and Synechococcus at Station ALOHA Revealed through Flow Cytometry and High-Resolution Vertical Sampling. Frontiers in Marine Science, 4(359).
    van Dongen-Vogels, V., Seymour, J. R., Middleton, J. F., Mitchell, J. G., & Seuront, L. (2012). Shifts in picophytoplankton community structure influenced by changing upwelling conditions. Estuarine, Coastal and Shelf Science, 109, 81-90.
    Wang, J., & Oey, L.-Y. (2014). Inter-annual and decadal fluctuations of the Kuroshio in East China Sea and connection with surface fluxes of momentum and heat. Geophysical Research Letters, 41(23), 8538-8546.
    Yang, Y., Liu, C.-T., Hu, J.-H., & Koga, M. (1999). Taiwan Current (Kuroshio) and Impinging Eddies. Journal of Oceanography, 55(5), 609-617.
    Yang, Y. J., Jan, S., Chang, M.-H., Wang, J., Mensah, V., Kuo, T.-H., Tsai, C.-J., Lee, C.-Y., Andres, M., & Centurioni, L. R. (2015). Mean structure and fluctuations of the Kuroshio East of Taiwan from in situ and remote observations. Oceanography, 28(4), 74-83.
    Zhang, D., N. Lee, T., E. Johns, W., Liu, C.-T., & Zantopp, R. (2001). The Kuroshio East of Taiwan: Modes of Variability and Relationship to Interior Ocean Mesoscale Eddies. Journal of Physical Oceanography, 31, 1054-1074.
    Zhao, H., Tang, D., & Wang, Y. (2008). Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in the South China Sea. Marine Ecology Progress Series, 365, 57-65.

    下載圖示
    QR CODE