簡易檢索 / 詳目顯示

研究生: 陳筱鳳
Chen, Hsiao-Feng
論文名稱: 路易斯酸輔佐側鏈烯-,炔-,和呋喃-炔醯胺衍生物的分子內環化反應:2-胺基萘環、螺旋γ-內醯胺與三取代吡咯化合物的合成
Lewis Acid-Promoted Intramolecular Cyclization Reactions of Ene-, Yne-, and Furan-Tethered Ynamides: Synthesis of 2-Aminonaphthalenes, Spiro γ-Lactams, and Trisubstituted Pyrrole Derivatives
指導教授: 葉名倉
Yeh, Ming-Chang
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 528
中文關鍵詞: 炔醯胺銦(III)炔-炔醯胺二氯亞鐵螺旋γ-內醯胺呋喃-炔醯胺氯金酸鈉吡咯
英文關鍵詞: ynamide, indium(III), naphthalene, yne-ynamide, iron(II) chloride, spiro γ-lactam, furan-ynamide, NaAuCl4, pyrrole
DOI URL: http://doi.org/10.6345/NTNU201900449
論文種類: 學術論文
相關次數: 點閱:86下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要探討三個主題,依序利用路易斯酸輔佐分子內環化芳香1,5-烯炔醯胺、五員環N-丙炔基-N-1-炔醯胺,和呋喃炔醯胺化合物,分別合成出2-胺基萘、螺旋γ-內醯胺,與三取代吡咯衍生物。

    (1) 利用三氟甲磺酸銦催化劑,可有效的使鄰位帶有烯烴的芳香N-甲基-N-甲苯磺醯基炔醯胺化合物,合成出2-胺基萘衍生物。高效率的合成、溫和的反應條件,以及符合原子經濟效應皆為此反應的優勢。此外,也可利用sodium naphtalenide於四氫呋喃溶液中,成功將氮上的甲苯磺醯基去保護,得到二級胺萘衍生物。

    (2) 以二氯亞鐵試劑輔佐五員環N-丙炔基-N-1-炔醯胺化合物,於四氫呋喃溶劑且乾燥空氣的條件下,進行分子內環化可生成氯加成的螺旋γ-內醯胺衍生物。二氯亞鐵活化N-丙炔基-N-1-炔醯胺,會先形成keteniminium ion中間體(I),氯陰離子加成至keteniminium ion碳中心得到中間體(II),另一個氯陰離子由同側加成至炔基,水解後可得螺旋γ-內醯胺衍生物。

    (3) 利用金(III)催化呋喃炔醯胺化合物可有效合成2,3,4-三取代吡咯衍生物。以5 mol%氯金酸鈉作為反應催化劑,於溫和的條件下進行環化反應,即可得到高產率吡咯環化產物。其中值得一提的是,呋喃-炔醯胺化合物經金(III)催化,可促使呋喃開環來進行環化反應。而吡咯衍生物3號位帶有共軛烯醛取代,可藉由反應溫度的不同,個別分離出(Z)-或(E)-組態產物。

    This thesis covers three topics. Lewis acid-promoted intramolecular cyclization reactions of aromatic 1,5-enynamides, five-membered ring N-propargyl-N-1-ynylamides, and furan-tetherted ynamides yielding 2-aminonaphthalenes, spiro γ-lactams, and trisubstituted pyrrole derivatives, respectivety.

    (1) Indium triflate enabled the efficient synthesis of 2-aminonaphthalenes from aromatic N-methyl-N-tosyl-ynamides bearing an ortho-vinyl group. The reaction featured high efficiency, mild reaction conditions, as well as atom economy. Furthermore, the deprotection of the N-tosyl group with sodium naphtalenide in tetrahydrofuran provided the corresponding free amino napathalene derivatives.

    (2) The FeClR2R-promoted intramolecular cyclization of five-membered ring N-propargyl-N-1-ynylamides in tetrahydrofuran under dry air afforded chlorinated spiro γ-lactams. Activation of the N-propargyl-N-1-ynylamides with FeClR2R gave the keteniminium ion (I), which was attacked by chloride anion to afforded intermediate (II). Syn-addition of the chloride and the olefin moiety to the pendant alkyne of II generated the spiro γ-lactams.

    (3) An efficient gold(III)-catalyzed formation of 2,3,4-trisubstituted pyrrole derivatives from furan-tethered ynamides is reported. The transformation was under mild reaction conditions and in good yield using 5 mol% NaAuClR4R as the catalyst. It worthly noted that gold(III)-catalyzed furan-ynamide cyclization proceeded through ring-opening of furan. And the pyrrole deivatives had a propenal side chain at C3 position, the isolation of (Z)- or (E)- configuration were both viable by different reaction temperature.

    目錄 i 圖目錄 v 式目錄 vii 流程目錄 ix 表目錄 xiii 縮寫列表 xv 摘要 xvii Abstract xix 第一章 緒論 1 1-1 萘骨架之天然物 1 1-2 螺旋γ-內醯胺之天然物 4 1-3 吡咯(pyrrole)骨架之天然物 5 第二章 三氟甲磺酸銦催化2-胺基萘化合物的合成 9 2-1 前言 9 2-2 文獻回顧 10 2-3 實驗設計與概念 25 2-4 實驗結果與討論 27 2-5 反應機制探討 44 2-6 結論 47 第三章 二氯亞鐵輔佐螺旋γ-內醯胺化合物的合成 49 3-1 前言 49 3-2 文獻回顧 50 3-3 實驗設計與概念 69 3-4 實驗結果與討論 75 3-5 反應機制探討 95 3-6 結論 98 第四章 氯金酸鈉催化三取代吡咯化合物的合成 99 4-1 前言 99 4-2 文獻回顧 100 4-3 實驗設計與概念 121 4-4 實驗結果與討論 122 4-5 反應機制探討 141 4-6 結論 146 第五章 EXPERIMENTAL SECTION 147 5-1 General Experimental Details 147 5-2 Indium(III)-Catalyzed Synthesis of 2-Aminonaphthalene Derivatives 148 5-3 Iron(II)-Promoted Synthesis of Spiro γ-Lactam Derivatives 189 5-4 Gold(III)-Catalyzed Synthesis of Trisubstituted Pyrrole Derivatives 236 參考資料 263 附錄 271 1H、13C與19F NMR 圖譜 273 X-ray ORTEP 解析圖譜以及checkCIF/PLATON report 445 期刊論文發表 497

    1. Teponno, R. B.; Kusari, S.; Spiteller, M. Nat. Prod. Rep. 2016, 33, 1044.
    2. Navaratne, P. V.; Grenning, A. J. Org. Biomol. Chem. 2017, 15, 69.
    3. Zhang, J.-J.; Yan, C.-S.; Peng, Y.; Luo, Z.-B.; Xu, X.-B.; Wang, Y.-W. Org. Biomol. Chem. 2013, 11, 2498.
    4. Harrowven, D. C.; Bradley, M.; Lois Castro, J.; Flanagan, S. R. Tetrahedron Lett. 2001, 42, 6973.
    5. Nono, E. C. N.; Mkounga, P.; Kuete, V.; Marat, K.; Hultin, P. G.; Nkengfack, A. E. J. Nat. Prod. 2010, 73, 213.
    6. Hemmati, S.; Seradj, H. Molecules 2016, 21, 820.
    7. Trinh, P. T. N.; Luan, N. Q.; Tri, M. D.; Khanh, V. D.; An, N. H.; Minh, P. N.; An, P. N.; Thuy, N. T. L.; Phung, N. K. P.; Dung, L. T. Nat. Prod. Res. 2017, 31, 1733.
    8. Ribeiro, A. C.; Rocha, Â.; Soares, R. M. D.; Fonseca, L. P.; da Silveira, N. P. Carbohydr. Polym. 2017, 157, 267.
    9. Li, J. C.; Li, G. P.; Yang, J. H.; Dai, Y.; Duan, Y. X.; Zhang, J. S. Asian J. Chem. 2012, 24, 2815.
    10. Kikuchi, T.; Nishinaga, T.; Inagaki, M.; Niwa, M.; Kuriyama, K. Chem. Pharm. Bull. 1975, 23, 416.
    11. Walsh, C. T.; Garneau-Tsodikova, S.; Howard-Jones, A. R. Nat. Prod. Rep. 2006, 23, 517.
    12. Gupton, J. T. Top. Heterocycl. Chem. 2006, 2, 53.
    13. Imbri, D.; Tauber, J.; Opatz, T. Mar. Drugs 2014, 12, 6142.
    14. Fan, H.; Peng, J.; Hamann, M. T.; Hu, J.-F. Chem. Rev. 2008, 108, 264.
    15. Plisson, F.; Conte, M.; Khalil, Z.; Huang, X.-C.; Piggott, A. M.; Capon, R. J. ChemMedChem 2012, 7, 983.
    16. Palermo, J. A.; Brasco, M. F. R.; Seldes, A. M. Tetrahedron 1996, 52, 2727.
    17. Liu, H.; Ma, L.; Zhou, R.; Chen, X.; Fang, W.; Wu, J. ACS Catal. 2018, 8, 6224.
    18. DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
    19. Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560.
    20. Lu, T.; Hsung, R. P. Arkivoc 2014, i, 127.
    21. Rischmann, M.; Mues, R.; Geiger, H.; Laas, H. J.; Eicher, T. Phytochemistry 1989, 28, 867.
    22. Zhang, C.; Chen, L.; Chen, K.; Jiang, H.; Zhu, S. Org. Chem. Front. 2018, 5, 1028.
    23. Karunakaran, J.; Mohanakrishnan, A. K. Org. Lett. 2018, 20, 966.
    24. Chen, M.; Su, N.; Deng, T.; Wink, D. J.; Zhao, Y.; Driver, T. G. Org. Lett. 2019, 21, 1555.
    25. Wu, F.; Zhu, S. Org. Lett. 2019, 21, 1488.
    26. Chen, Z.; Zeng, W.; Jiang, H.; Liu, L. Org. Lett. 2012, 14, 5385.
    27. Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 113.
    28. Willumstad, T. P.; Haze, O.; Mak, X. Y.; Lam, T. Y.; Wang, Y. P.; Danheiser, R. L. J. Org. Chem. 2013, 78, 11450.
    29. Fuchibe, K.; Mayumi, Y.; Zhao, N.; Watanabe, S.; Yokota, M.; Ichikawa, J. Angew. Chem., Int. Ed. 2013, 52, 7825.
    30. Fuchibe, K.; Mayumi, Y.; Yokota, M.; Aihara, H.; Ichikawa, J. Bull. Chem. Soc. Jpn. 2014, 87, 942.
    31. Selvi, T.; Velmathi, S. J. Org. Chem. 2018, 83, 4087.
    32. Alonso-Marañón, L.; Martínez, M. M.; Sarandeses, L. A.; Gómez-Bengoa, E.; Sestelo, J. P. J. Org. Chem. 2018, 83, 7970.
    33. Thombal, R. S.; Lee, Y. R. Org. Lett. 2018, 20, 4681.
    34. Yeh, M.-C. P.; Lin, H.-H.; Kuo, S.-F.; Chen, P.-J.; Hong, J.-W. Adv. Synth. Catal. 2014, 356, 3816.
    35. Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem., Int. Ed. 2011, 50, 6911.
    36. Sekine, K.; Takayanagi, A.; Kikuchi, S.; Yamada, T. Chem. Commun. 2013, 49, 11320.
    37. Zall, A.; Bensinger, D.; Schmidt, B. Eur. J. Org. Chem. 2012, 2012, 1439.
    38. Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200.
    39. Ji, S.; Gortler, L. B.; Waring, A.; Battisti, A.; Bank, S.; Closson, W. D. J. Am. Chem. Soc. 1967, 89, 5311.
    40. Garcia, P.; Harrak, Y.; Diab, L.; Cordier, P.; Ollivier, C.; Gandon, V.; Malacria, M.; Fensterbank, L.; Aubert, C. Org. Lett. 2011, 13, 2952.
    41. Wei, D.; Netkaew, C.; Darcel, C. Adv. Synth. Catal. 2019, 361, 1781.
    42. Sun, L.; Liu, P.; Wang, J.; Lu, P.; Wang, Y. J. Org. Chem. 2017, 82, 8407.
    43. Caruano, J.; Muccioli, G. G.; Robiette, R. Org. Biomol. Chem. 2016, 14, 10134.
    44. Li, Z.; Sharma, U. K.; Liu, Z.; Sharma, N.; Harvey, J. N.; Van der Eycken, E. V. Eur. J. Org. Chem. 2015, 2015, 3957.
    45. Marin, L.; Force, G.; Guillot, R.; Gandon, V.; Schulz, E.; Leboeuf, D. Chem. Commun. 2019, 55, 5443.
    46. Bailey, P. D.; Morgan, K. M.; Smith, D. I.; Vernon, J. M. Tetrahedron 2003, 59, 3369.
    47. Lachia, M.; Richard, F.; Bigler, R.; Kolleth-Krieger, A.; Dieckmann, M.; Lumbroso, A.; Karadeniz, U.; Catak, S.; De Mesmaeker, A. Tetrahedron Lett. 2018, 59, 1896.
    48. Panchaud, P.; Ollivier, C.; Renaud, P.; Zigmantas, S. J. Org. Chem. 2004, 69, 2755.
    49. Ding, Q.; He, H.; Cai, Q. Org. Lett. 2018, 20, 4554.
    50. Bertus, P.; Menant, C.; Tanguy, C.; Szymoniak, J. Org. Lett. 2008, 10, 777.
    51. Prabagar, B.; Nayak, S.; Prasad, R.; Sahoo, A. K. Org. Lett. 2016, 18, 3066.
    52. Wang, C.-S.; Roisnel, T.; Dixneuf, P. H.; Soulé, J.-F. Adv. Synth. Catal. 2019, 361, 445.
    53. Chen, J.-Q.; Chang, R.; Lin, J.-B.; Luo, Y.-C.; Xu, P.-F. Org. Lett. 2018, 20, 2395.
    54. Yeh, M.-C. P.; Shiue, Y.-S.; Lin, H.-H.; Yu, T.-Y.; Hu, T.-C.; Hong, J.-J. Org. Lett. 2016, 18, 2407.
    55. Lin, H.-H.; Chiang, T.-C.; Wu, R.-X.; Chang, Y.-M.; Wang, H.-W.; Liu, S.-T.; Yeh, M.-C. P. Adv. Synth. Catal. 2019, 361, 1277.
    56. 張依湄碩士論文, 國立臺灣師範大學化學所, 2017.
    57. Rayner, P. J.; O'Brien, P.; Horan, R. A. J. Am. Chem. Soc. 2013, 135, 8071.
    58. Ruano, J. L. G.; Alemán, J.; Cid, M. B.; Parra, A. Org. Lett. 2005, 7, 179.
    59. Xu, H.-C.; Chowdhury, S.; Ellman, J. A. Nat. Protoc. 2013, 8, 2271.
    60. Al-huniti, M. H.; Lepore, S. D. Org. Lett. 2014, 16, 4154.
    61. Wu, X.; Zhao, P.; Geng, X.; Wang, C.; Wu, Y.-D.; Wu, A.-X. Org. Lett. 2018, 20, 688.
    62. Ma, X.; Liu, L.; Wang, J.; Xi, X.; Xie, X.; Wang, H. J. Org. Chem. 2018, 83, 14518.
    63. Yang, J.; Zhou, X.; Zeng, Y.; Huang, C.; Xiao, Y.; Zhang, J. Chem. Commun. 2016, 52, 4922.
    64. Leonardi, M.; Estévez, V.; Villacampa, M.; Menéndez, J. C. Adv. Synth. Catal. 2019, 361, 2054.
    65. Hantzsch, A. Ber. Dtsch. Chem. Ges. 1890, 23, 1474.
    66. Hashmi, A. S. K.; Rudolph, M.; Bats, J. W.; Frey, W.; Rominger, F.; Oeser, T. Chem.–Eur. J. 2008, 14, 6672.
    67. Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000, 122, 11553.
    68. Hashmi, A. S. K.; Pankajakshan, S.; Rudolph, M.; Enns, E.; Bander, T.; Rominger, F.; Frey, W. Adv. Synth. Catal. 2009, 351, 2855.
    69. Du, X.; Yu, J.; Gong, J.; Zaman, M.; Pereshivko, O. P.; Peshkov, V. A. Eur. J. Org. Chem. 2019, 2019, 2502.
    70. Yang, Y.; Fei, C.; Wang, K.; Liu, B.; Jiang, D.; Yin, B. Org. Lett. 2018, 20, 2273.
    71. Zhang, X.; Xu, X.; Chen, G.; Yi, W. Org. Lett. 2016, 18, 4864.
    72. Peng, H.; Li, J.; Wang, F.; Liu, B.; Yin, B. J. Org. Chem. 2016, 81, 4939.
    73. Kardile, R. D.; Kale, B. S.; Sharma, P.; Liu, R.-S. Org. Lett. 2018, 20, 3806.
    74. Li, M.-B.; Grape, E. S.; Bäckvall, J.-E. ACS Catal. 2019, 9, 5184.
    75. Arcadi, A.; Di Giuseppe, S.; Marinelli, F.; Rossi, E. Tetrahedron: Asymmetry 2001, 12, 2715.
    76. Shu, X.-Z.; Liu, X.-Y.; Ji, K.-G.; Xiao, H.-Q.; Liang, Y.-M. Chem.–Eur. J. 2008, 14, 5282.
    77. Kim, K.; Jung, J.; Heo, H. G.; Oh, C. H. Bull. Korean Chem. Soc. 2017, 38, 845.
    78. 林冠碩碩士論文, 國立臺灣師範大學化學所, 2018.
    79. Davis, F. A.; Zhang, Y.; Andemichael, Y.; Fang, T.; Fanelli, D. L.; Zhang, H. J. Org. Chem. 1999, 64, 1403.
    80. Dekamin, M. G.; Karimi, Z. J. Organomet. Chem. 2009, 694, 1789.
    81. Hertenstein, U.; Hünig, S.; Öller, M. Chem. Ber. 1980, 113, 3783.
    82. Takahashi, Y.; Fuwa, H.; Kaneko, A.; Sasaki, M.; Yokoshima, S.; Koizumi, H.; Takebe, T.; Kan, T.; Iwatsubo, T.; Tomita, T.; Natsugari, H.; Fukuyama, T. Bioorg. Med. Chem. Lett. 2006, 16, 3813.
    83. Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380.
    84. Go, T.; Morimatsu, A.; Wasada, H.; Tanabe, G.; Muraoka, O.; Sawada, Y.; Yoshimatsu, M. Beilstein. J. Org. Chem. 2018, 14, 2722.
    85. Zhang, G.; Cui, L.; Wang, Y.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 1474.
    86. Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. Angew. Chem., Int. Ed. 2016, 55, 12688.
    87. Zeng, Z.; Jin, H.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2018, 57, 16549.

    下載圖示
    QR CODE