簡易檢索 / 詳目顯示

研究生: 張晴棻
Chang, Ching-Fen
論文名稱: 一、藉由高活性之亞烷基前驅物通過催化型分子內威悌反應合成非那烯[1,2-b]呋喃酮及呋喃[3,2-c]喹啉酮 二、透過分子內威悌或𝛽-醯化反應合成二苯並環庚[1,2-b]呋喃酮或酮基官能化亞烷基茚二酮衍生物
I. Synthesis of Phenaleno[1,2-b]furanones and Furo[3,2-c]quinolines from Highly Reactive Akylidine Precusors via Catalytic Intramolecular Wittig Reaction II. Intramolecular Wittig or β-Acylation Reaction for Constructoin of Dibenzocyclohepta[1,2-b]furanones or Keto Functionalized Alkylidene Indandione Derivatives
指導教授: 林文偉
Lin, Wenwei
口試委員: 林文偉
Lin, Wenwei
姚清發
Yao, Ching-Fa
劉維民
Liu, Wei-Min
張永俊
Jang, Yeong-Jiunn
口試日期: 2023/06/28
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 305
中文關鍵詞: 不需額外添加鹼催化反應威悌反應非那烯[1,2-b]呋喃酮呋喃[3,2-b]喹啉酮順序一鍋化合成法MBH合環反應二苯並環庚[1,2-b]呋喃酮
英文關鍵詞: base-free, catalysis, Wittig reaction, one-pot synthesis, MBH rection
DOI URL: http://doi.org/10.6345/NTNU202300820
論文種類: 學術論文
相關次數: 點閱:169下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

第一部分:
我們開發了一個以高活性之亞烷基前驅物做為起始物,、 來進行不需額外添加鹼 之催化型威悌反應。主要概念是加入芳基亞磺酸做為捕獲親核試劑(trapping reagent)來得到 3-芳碸烷基化合物,、 且能夠做在適當的反應條件下釋出穩定的 高活性亞烷基化合物,得以避免產生不必要的[2+1]副產物。
本部分的研究中,我們成功以 3-芳碸烷基非那烯酮及 3-芳碸烷基喹啉酮作為 起始物,並和磷、醯氯作用會合成出非那烯[1,2-b]呋喃酮和呋喃[3,2-b]喹啉酮。、 在優化的過程中,我們也發現可以透過溫度或是添加劑的調控能有助於反應的 進行,且在不需額外加入鹼的條件下及能獲得良好的產率,也進一步的推測: 反應中氧化磷被還原後得到的磷試劑不僅做為親核試劑和亞烷基化合物進行 加成,也做為鹼來推動去質子化的步驟順利地得到威悌產物。隨後我們也陸續 完成一些取代基效應的探討,研究其對電子效應或是立體效應的影響,並得到 更多樣性且結果良好的目標產物。

第二部分:
前半部是以二苯並環庚-5,7-二酮作為起始物,分別透過無鹼之催化行威悌反應 或是以三苯基磷誘導反應來得到二苯並環庚[1,2-b]呋喃酮。開發了兩種方法, 催化條件則能節省試劑的用量、使得反應廢棄物回復到催化循環中繼續反應且 提供了一個更快速有效的合成策略;而誘導條件則是使用非常溫和、容易取得 且價格便宜的三苯基磷也提供了一個更簡易、好上手的合成策略。同時,也發 現此反應取代基耐受性好,也利用控制實驗來探討磷試劑在此反應做為親核試 劑也能作為鹼的功用。
後半部分則是發展了以順序的一鍋化合成法,以炔酮先藉由 MBH 合環後,、 再 經由磷誘導的威悌反應或是𝛽-醯化來得到二苯並環庚[1,2-b]呋喃酮或是酮基官 能化亞烷基茚二酮衍生物。透過針對五和七環亞烷基化合物的研究,發現其結 構不同的反應活性,更拓展了這些化合物的合成策略。

Part I :
We have developed a base-free catalytic Wittig reaction, using highly reactive alkyl precursors as starting materials. The main concept involves the addition of arylsulfonyl acids as trapping reagents to obtain 3-arylalkylidene compounds. This approach allows the formation of stable and highly reactive alkylated compounds under appropriate reaction conditions, thereby avoiding the formation of unnecessary [2+1] byproducts. Subsequent reaction with phosphine and acyl chlorides leads to the synthesis of phenaleno[1,2-b]furanones and furan[3,2-b]quinolinones. During the optimization process, we found that the reaction without the base could be regulated by temperature or the addition of additives providing in Wittig products. Subsequently, we conducted investigations on the study of the substrate scope, which afford a wide range of expected products.

Part II :
First, two methods were developed using dibenzocycloheptene-5,7-diones as starting materials. In the first reaction condition (condition A) utilizing a base-free catalytic Wittig reaction offer an efficient synthesis strategy by recycling reagent consumption, and the second reaction condition (condition B) employing triphenylphosphine- induced reaction is mild, these methods successfully obtain dibenzocycloheptene[1,2-b]furanones exhibiting goods functional group tolerance.
Second part involves the development of a sequential one-pot synthesis method, where ynones undergo Morita-Baylis-Hillman (MBH) cyclization followed by phosphine-induced Wittig reaction or 𝛽-acylation furnishing dibenzocycloheptene[1,2-b]furanones or keto functionalized alkylidene indandione derivative.

一、 緒論 1 1-1 呋喃的合成與應用 1 1-2 威悌反應 2 1-3 催化型威悌反應 4 1-4 不需額外添加鹼之催化型威悌反應 5 1-5 實驗室過去催化型威悌反應之研究 6 二、 第一部分: 藉由高活性之亞烷基前驅物通過催化型分子內威悌反應合成非 那烯[1,2-b]呋喃酮及呋喃[3,2-c]喹啉酮 8 2-1 前言 8 2-1-1 藉三組分合成鏻兩性離子來得到呋喃化合物的策略 8 呋喃喹啉酮的介紹 11 2-1-2非那烯的介紹與應用 13 2-2 研究動機與實驗設計 15 2-2-1 亞烷基-1,3-非那烯二酮化合物的合成設計 15 2-2-2 以芳基亞磺酸合成反應前驅物 21 2-2-3 以 3-芳碸烷基非那烯酮來進行催化型威悌反應 22 2-3 實驗結果與討論 25 2-3-1 3-芳碸烷基非那烯酮的條件篩選 25 2-3-2 3-芳碸烷基非那烯酮之取代基效應的探討 30 2-3-3 3-芳碸烷基非那烯酮之反應機構的探討 32 2-3-4 3-芳碸烷基喹啉酮的條件篩選 33 2-3-5 3-芳碸烷基喹啉酮之取代基效應的探討 36 2-3-6 3-芳碸烷基喹啉酮之反應機構的探討 37 2-4 結論 38 2-5 未來展望 39 2-6 光譜解析 40 2-6-1 化合物 53aa1H NMR 光譜解析 40 2-6-2 化合物 53aa13C NMR 光譜解析 44 2-6-3 化合物 34bb1H NMR 光譜解析 49 2-6-4 化合物 34bb13C NMR 光譜解 52 2-7 實驗步驟與數據 55 2-7-1 分析儀器 55 2-7-2 實驗步驟 56 2-7-3 化合物數據 60 2-7-3-1 The phosphonium phenalene-3-olate 60 2-7-3-2 The 3-hydroxy-2-(arylsulfonylalkyl)-1H-phnalen-1-ones 61 2-7-3-3 The 7H-phenaleno[1,2-b]furan-7-one 64 2-7-3-4 The 3-(arylsulfonylalkyl)-4-hydroxy-1-quinoline-2(1H)ones 73 2-7-3-5 The 3-(arylsulfonylalkyl)-4-hydroxy-1-quinoline-2(1H)ones 76 2-7-4 X-ray 單晶繞射數據 83 2-8 參考資料 86 2-9 NMR 光譜 88 2-10 Checklist 116 三、 第二部分: 透過分子內威悌或𝛽-醯化反應合成二苯並環庚[1,2-b]呋喃酮和 酮基官能化亞烷基茚二酮衍生物 117 3-1 前言 117 3-1-1 實驗室過去以亞烷基化合物進行磷化學的研究 117 3-1-2 二苯並環庚烷的生物活性及合成方法 119 3-1-2二苯並環庚三烯酮的合成策略 122 3-2 研究動機與實驗設計 124 3-3 實驗結果與討論 125 3-3-1 製備起始物亞烷基二苯並環庚-5,7-二酮的合成策略 125 3-3-2催化型威悌反應的條件優化 126 3-3-3 催化型威悌反應之取代基效應的探討 129 3-3-4 催化型威悌反應之反應機構的探討 131 3-3-5 以三苯基磷進行磷誘導反應之條件篩選 132 3-3-6 磷誘導反應之取代基效應的探討 135 3-3-7 磷誘導反應之控制實驗 138 3-3-8 反應機構之中間體的結構確認 138 3-3-9 鹼與溫度對反應的影響 141 3-3-10 反應機構的探 145 3-3-11 反應的延伸應用性 146 3-3-12 以一鍋化反應合成出二苯並環庚[1,2-b]呋喃酮的條件篩選 147 3-3-13 順序的一鍋化反應之取代基效應的探討 152 3-3-13 以磷誘導反應來合成酮基官能化亞烷基茚二酮衍生物的條件篩選 153 3-3-14 取代基效應的探討與克級反應 158 3-3-15 反應機構的探討 159 3-3-15-1 氘化反應 160 3-4 結論 163 3-5 未來展望 164 3-6 光譜解析 166 3-6-1 化合物 123ab1H NMR 光譜解析 166 3-6-2 化合物 123ab13C NMR 光譜解析 170 3-7 實驗步驟與數據 174 3-7-1 分析儀器 174 3-7-2 實驗步驟 175 3-7-3化合物數據190 3-7-3-1 The alkylidene dibenzocycloheptanediones 190 3-7-3-2 The dibenzo cyclohepta[1,2-b]furanones 195 3-7-3-3The keto-functionalized indandione derivatives 229 3-7-4 X-ray 單晶繞射數據 241 3-8 參考資料 244 3-9 NMR 光譜 246 3-10 Checklist 304

1. Zhang, C.; Jianga, H.; Zhu, S.; Chem. Commun. 2017, 53, 2677-2680.
2. Nakajima, M.; Kondo, Y.; Nakano, S.; Adachi, Y.; Choi, D.; Franzén, R.; Nemoto, T. Tetrahedron Lett. 2020, 61, 151754.
3. Chen, K.-W.; Syu, S.; Jang, Y.-J.; Lin, W. Org. Biomol. Chem. 2011, 9, 2098-2106.
4. Lee, Y-T.; Jang, Y.-J.; Syu, S.; Chou, S.-C.; Lee, C.-J.; Lin, W. Chem. Commun. 2012, 48, 8135-8137,
5. Lee, Y.-T.; Lee, Y.-T.; Lee, C.-J.; Sheu, C.-N.; Lin, B.-Y.; Wang, J.-H.; Lin, W. Org. Biomol. Chem. 2013, 11, 5156-5161.
6. O’Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkel, S. R.; Chass, G. A. Angew. Chem. Int. Ed. 2009, 48, 6836-6839.
7. Schirmer, M.-L.; Adomeit, S.; Werner, T. Org. Lett. 2015, 17, 3078-3081.
8. Tsai, Y.-L.; W. Asian J. Org. Chem. 2015, 4, 1040-1043.
9. Lee, C.-J.; Chang, T.-H.; Yu, J.-K.; Madhusudhan Reddy, G.; Hsiao, M.-Y.; Lin, W. Org. Lett. 2016, 18, 3758-3761.
10. Liou, Y.-C.; Wang, H.-W.; Edukondalu, A.; Lin, W. Org. Lett. 2021, 23, 3064-3069.
11. Lee, C.-J.; Jang, Y.-J.; Wu, Z.-Z.; Lin, W. Org. Lett. 2012, 14, 1906-1909.
12. Wu, Z.-Z.; Jang, Y.-J.; Lee, C-J.; Lee, Y.-T.; Lin, W. Org. Biomol. Chem. 2013, 11, 828-834.
13. Wu, T.-S.; Li, C.-Y.; Leu, Y.-L.; Hu, C.-Q.. Phytochem. 1999, 50, 509–512.
14. Marzano, C.; Baccichetti, F.; Carlassare, F.; Chilin, A.; Lora, S.; Bordin, F. Photochem. Photobiol. 2000, 71, 263-272.
15. Butenscḧon, I.; Möller, K.; Hänsel, W. J. Med. Chem. 2001, 44, 1249-1256.
16. Guo, T.; Wei, X.-N.; Wang, H.-Y.; Zhao, B. Synth. Commun. 2018, 48, 761-767.
17. Ghosh, M.; Hajra, A. Eur. J. Org. Chem. 2015, 7836-7841.
18. Kazuhiro, K.; Tomokazu, U.; Koujirou, T.; Masako, M.; Hideo, T.; Osamu, M.; Hisatoshi, K. Bull. Chem. Soc. Jpn. 1998, 71, 1691-1697.
19. Narita, A.; Wang, X. Y.; Fengb, X.; Müllen, K.; Chem. Soc. Rev. 2015, 44, 6616--6643
20. Morita, Y.; Nishida, S.; Kawai, J.; Fukui, K.; Nakazawa, S.; Sato, K.; Shiomi, D.; Takui, T.; Nakasuji, K. Org. Lett. 2002, 4, 1985-1988.
21. Morita, Y.; Nishida, S.; Murata, T.; Moriguchi, M.; Ueda, A.; Satoh, M.; Arifuku, K.; Sato, K.; Takui, T. Nat. Mater. 2011, 10, 947-951.
22. Wössner, J. S.; Esser, B.; J. Org. Chem. 2020, 85, 5048-5057.
23. Ballini, R.; Palmieri, A.; Petrini, M.; Shaikha, R. R. Adv. Synth. Catal. 2008, 350, 129-134.
24. Yuan, S.-P.; Zhang, X.-Y.; Jia, Y.-Q.; Wang, Z.-H.; Zhao, J.-Q.; You, Y.; Zhou, M.-Q.; Yuan, W.-C. Chem. Commun. 2021, 57, 4938-4941.
25. Jia, Y.-Q.; Zhao, J.-Q.; Wang, Z.-H.; You, Y.; Zhang, Y.-P.; Jin, X.; Ming- Zhou, Q.; Gea, Z.-Z.; Yuan, W.-C. Chem. Commun., 2022, 58, 12062-12065.
26. Liu, S.;Chen, R.; Zhang, J. Molecules 2019, 24, 1407-1418.
27. O'Brien, C. J.; Nixon, Z. S.; Holohan, A. J.; Kunkel, S. R.; Tellez, J. L.; Doonan, B. J.; Coyle, E. E.; Lavigne, F.; Kang, L. J.; Przeworski, K. C. Chem. Eur. J. 2013, 19, 15281-15289.
28. Nykaza, T. V.; Harrison, T. S.; Ghosh, A.; Putnik, R. A.; Radosevich, A. T. J. Am. Chem. Soc., 2017, 139, 6839-6842.
29. Li, G. Kanda, Y.; Hong, S. Y.; Radosevich, A. T. J. Am. Chem. Soc. 2022, 144, 8242–8248.
30. Yamashita, M.; Kaneko, M.; Tokuda, H.; Nishimura, K.; Kumeda, Y.; Iida, A. Bioorg. Med. Chem. 2009, 17, 6286-6291.
31. Yang, S.-M.; Wang, C.-Y.; Lin, C.-K.; Karanam, P.; Reddy, G. M.; Tsai, Y.-L.; Lin, W. Angew. Chem. Int. Ed. 2018, 57, 1668-1672.

32. Lee, C.-J.; Sheu, C.-N.; Tsai, C.-C.; Wu, Z.-Z.; Lin, W. Chem. Commun. 2014, 50, 5304-5306.
33. Jeng, W.-C.; Chien, P.-C.; Vagh, S. S.; Edukondalu, A.; Lin, W. Synthesis 2021, 53, 4408-4418
34. Khairnar, P. V.; Su, Y.-H.; Chen, Y.-C.; Edukondalu, A.; Chen, Y.-R.; Lin, W. Org. Lett. 2020, 22, 6868-6872.
35. Vagh, S. S.; Hou, B.-J.; Edukondalu, A.; Wang, P.-C.; Chen, Y.-R.; Lin, W. Adv. Synth. Catal. 2021, 363, 5429-5435.
36. Surralles, J.; Antoccia, A.; Degrassi, F.; Peris, F.; Tanzarella, C.; Xamena, N.; Marcos, R. Mutagenesis, 1994, 9, 347-354.
37. Lin, H.-C.; Lee, S.-S. J. Nat. Prod., 2012, 75, 1735-1743.
38. Hackeloer, K.; Schnakenburg, Waldvogel, G. S. R. Org. Lett. 2011, 13, 916-919.
39. Amr, A.-G. E.; Mohamed, A. M.; Mohamed, S. F.; Abdel-Hafez, N. A.; Hammam, A. E.-F. G. Bioorg. Med. Chem. 2006, 14, 5481-5488.
40. Kramer, B.; Waldvogel, S. R.; Angew. Chem. Int. Ed. 2004, 43, 2446-2449.
41. Sawyer, J. S.; Macdonald, T.; Tetrahedron Lett. 1988, 28, 4839-4942.
42. Banwell, M. G.; Lambert, J. N.; Mackay, M. F.; Greenwood, R. J. J. Chem. Soc., Chem. Commun. 1992, 974-975.
43. Takada, T.; Arisawa, M.; Gyoten, M.; Hamada, R.; Tohma, H.; Kita, Y. J. Org. Chem. 1998, 63, 7698-7706.
44. Wang, P.-S.; Zhou, X.-L.; Gong, L.-Z. Org. Lett. 2014, 16, 976-979.
45. Lu, D. Wan, Y.; Kong, Li.; Zhu, G. Chem. Commun. 2016, 52, 13971-13974.
46. Kong, W.; Fuentes, N.; Fuentes, N.; García-Domínguez, A.; Merino, E.; Nevado, C. Angew. Chem. Int. Ed. 2015, 54, 2487-2491.
47. Mondal, A.; Shivangi, Tung, P.; Wagulde, S. V.; Ramasastry, S. S. V. Chem. Commun. 2021, 57, 9260-9263.
48. Debrouwer, W. Fürstner, A. J. Am. Chem. Soc. 2018, 140, 1884-1893.
49. Choi, Y. L.; Yu, C.-M.; Kim, B. T.; Heo, J.-N. J. Org. Chem. 2009, 74, 3948-3951.
50. Palavong, N.; Jantrapirom, J.; Tummatorn, J.; Thongsornkleeb, C.; Ruchirawat, S. Asian J. Org. Chem. 2022, 11, e202200507.
51. Ali, I.; Nighot, D.; Lone, M.N.; Jain, A.  Synth. Commun., 2017, 47, 1175-1184.
52. Hu, G.-F.; Li, H.-J.; Zeng, C.; Wang, X.; Wang, N.; Peng, T.; Wang, S. Org. Lett. 2019, 21, 5285-5289.
53. Penhoat, M.; Leleu, S.; Dupas, G.; Papamicaël, C.; Marsais, F.; Levacher, V. Tetra. Lett. 2005, 46, 8385-8389.
54. Zhu, J.-L.; Tsai, Y.-T. J. .Org. Chem. 2021, 86, 813-828.
55. Hosoya, H.; Nagakura, S.; Bull. Chem. Soc. Jpn. 1966, 39, 1414-1418.
56. Mondal, A.; Hazra, R.; Grover, J.; Raghu, M.; Ramasastry, S. S. V. ACS Catal. 2018, 8, 2748-2753.
57. Lee, C.-J.; Sheu, C.-N.; Tsai, C.-C.; Wu, Z.-Z.; Lin, W. Chem. Commun. 2014, 50, 5304-5306.
58. Reddy, G. M.; Ko, C.-T.; Hsieh, K.-H.; Lee, C.-J.; Das, U.; Lin, W. J. Org. Chem. 2016, 81, 2420–2431.
59. Möhlmann, L.; Chang, G.-H.; Reddy, G. M.; Lee, C.-J.; Lin, W. Org. Lett. 2016, 18, 688–691.

無法下載圖示 本全文未授權公開
QR CODE