簡易檢索 / 詳目顯示

研究生: 彭敏華
Peng, Min-Hua
論文名稱: 觸覺回饋與鷹架策略對國小學習者擴增實境互動學習之影響
The Effects of Haptic Feedback and Scaffolding on Elementary Students’ Augmented Reality-Based Learning
指導教授: 陳明溥
Chen, Ming-Puu
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 129
中文關鍵詞: 模擬自主學習穿戴式裝置遊戲式學習體現認知
英文關鍵詞: simulation, self-directed learning, wearable devices, game-based learning, embodied cognition
DOI URL: http://doi.org/10.6345/NTNU202000613
論文種類: 學術論文
相關次數: 點閱:188下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以體驗式學習環為學習活動基本架構,將擴增實境數位遊戲搭配學習單設計「勇者降臨」AR玩科學活動進行實驗教學。研究目的旨在探討觸覺回饋(力與動覺回饋、動覺回饋)與鷹架策略(策略鷹架、程序鷹架)對國小四年級先備知識(高先備知識、低先備知識)學習者透過擴增實境互動進行槓桿原理學習的成效及動機之影響。研究對象為國小四年級學習者,參與者來自台北市某國小四年級224位學習者,有效樣本為201人。本研究採因子設計之準實驗研究法,自變項為觸覺回饋、鷹架策略與先備知識;觸覺回饋依照實體教具所提供的力回饋高低分為「力與動覺回饋」及「動覺回饋」;鷹架策略則依照學習的輔助方法不同分為「策略鷹架」與「程序鷹架」;先備知識依學習成效前測成績分為「高先備知識」與「低先備知識」。依變項包含槓桿原理學習成效(知識記憶、知識理解、知識應用)與學習動機(槓桿原理學習動機、AR互動科技接受度)。
    研究結果顯示:(1)就學習成效而言,在接受動覺回饋時,程序鷹架學習者在知識應用表現優於策略鷹架組;接受程序鷹架學習時,動覺回饋組學習者在知識應用表現則優於力與動覺回饋組學習者;(2)就學習動機而言,學習者對於槓桿原理學習皆保持正向動機,其中策略鷹架組在使用力與動覺回饋時,比使用動覺回饋表現出較高的參與動機;最後,(3)在AR互動科技感受方面,各組學習者均抱持正向看法,其中動覺回饋組在使用程序鷹架組時,比使用策略鷹架有較高參與動機的表現。

    This study explored the effects of haptic feedback, scaffolding and prior knowledge on elementary students’ learning performance and motivation while learning from an augmented reality-based learning. The experiential learning model was employed to serve as a learning framework for the design of the "Brave Advent" augmented reality learning game. The participants were 224 fourth graders and the effective sample size was 201. A quasi-experimental design was employed and the independent variables were type of haptic feedback, type of scaffolding and levels of prior knowledge. Two types of haptic feedback were examined, including the force+kinesthetic feedback and the kinesthetic feedback. The scaffoldings included the strategic scaffolding and the procedural scaffolding. The levels of prior knowledge were the high prior knowledge and the low prior knowledge. The dependent variables included participants’ learning performance and motivation.
    The results revealed that (a) for the learning performance, in the kinematic feedback group, the procedural-scaffolding group outperformed the strategic-scaffolding group on the application performance; and in the procedural-scaffolding group, the kinematic feedback learners outperformed the force+kinesthetic learners on the application performance; (b) for learning motivation, participants showed positive motivation, and in the strategic scaffolding group, the force+kinesthetic-feedback group revealed higher degree of motivation than the kinesthetic-feedback group; and (c) as for the technology acceptance, participants also showed positive attitude toward the employed technology, and in the kinesthetic-feedback group, the procedural-scaffolding learners revealed higher degree of attitude than the strategic-scaffolding learners.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 6 第三節 研究範圍與限制 7 第四節 名詞釋義 9 第二章 文獻探討 13 第一節 體驗式學習環 13 第二節 擴增實境體現認知設計 16 第三節 觸覺回饋 20 第四節 鷹架策略 22 第三章 研究方法 25 第一節 研究對象 25 第二節 研究設計 26 第三節 研究工具 28 第四節 實驗流程 39 第五節 資料處理與分析 43 第四章 結果與討論 45 第一節 槓桿原理學習成效分析 45 第二節 槓桿原理學習動機分析 52 第五章 結論與建議 77 第一節 結論 77 第二節 建議 80 參考文獻 83 附錄 95

    王美芬、熊召弟(2000):國民小學自然科教材教法。台北市:心理出版社。
    朱志青(2011)。示意圖結合多媒體教學對國小六年級學習槓桿原理之影響(未出版碩士論文)。交通大學理學院科技與數位學習學程,新竹市。
    江文慈(1993)。槓桿認知能力發展的評量與學習遷移歷程的分析─動態評量之應用(未出版碩士論文)。國立臺灣師範大學教育心理與輔導研究所,台北市。
    李田英(1995)。國小三至五年級自然科學課程學習困難之教材分析。師大學報。
    林思汝(2014)。擴增實境遊戲式學習與編碼策略對國小學生槓桿原理學習之影響(未出版碩士論文)。國立臺灣師範大學資訊教育研究所,台北市。
    林致瑋、林永順(2007)。鷹架理論對技術教學的省思—以機械實習為例。中華民國品質學會第43屆年會暨第13屆全國品質管理研討會。
    邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    洪新原、梁定澎、張嘉銘(2005)。科技接受模式之彙總研究。資訊管理學報,12(4),211-234。
    張志銘(2003)。國小六年級學童槓桿迷思概念之二階層診斷研究(未出版碩士論文)。臺北市立師範學院科學教育研究所,台北市。
    教育部(2018)。十二年國民基本教育課程綱要自然科學領域課綱。取自http://12basic.edu.tw/12about-3.php。
    莊濬豪(2019)。橢圓概念教學影片不同的呈現方式對學生的學習成效與認知負荷感受之影響研究(未出版碩士論文)。國立臺灣師範大學數學系,台北市。
    陳淑筠(2002)。國內學生自然科學迷思概念研究之後設研究。臺東師範學院教育研究所碩士論文,台東縣(未出版碩士論文)。
    陳義勳(1991):國小高年級學生自然科學中力學單元迷思概念之探討。臺北市立師範學院學報,27,83-104。
    彭泰源(1999)。國小五年級學童力與運動概念學習之研究(未出版碩士論文)。國立彰化師範大學科學教育研究所,彰化縣。
    曾永祥、許瑛玿(2006)。線上課程對高二學生四季成因概念學習的影響。科學教育學刊,14(3),257-282。
    游光純(2002)。利用臨床晤談探究國民小學高年級學童對槓桿概念的另有想法(未出版碩士論文)。國立臺北教育大學數理教育研究所,台北市。
    黃淑玲(2011)。以研究證據為基礎之多媒體學習理論:劍橋多媒體學習手冊之分析。課程研究,6(1),113。
    賴俊安(2012)。問題導向遊戲教學策略輔助國小自然槓桿原理課程學習效益之研究(未出版碩士論文)。國立臺中教育大學數位內容科技學系碩士論文,台中市。
    謝州恩(2013)。鷹架理論的發展、類型、模式與對科學教學的啟示。科學教育月刊。

    Al Mamun, M. A., Lawrie, G., & Wright, T. (2020). Instructional design of scaffolded online learning modules for self-directed and inquiry-based learning environments. Computers & Education, 144, 103695.
    Arzarello, F. & Edwards, L. (2005). Gesture and the construction of mathematical meaning (Research Forum 2). In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Conference of the Intertnational Group for the Psychology of Mathematics Education, 1, 122-145. Melbourne, Australia: University of Melbourne.
    Ayres, P., Marcus, N., Chan, C., & Qian, N. (2009). Learning hand manipulative tasks: When instructional animations are superior to equivalent static representations. Computers in Human Behavior, 25(2), 348-353.
    Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385.
    Bar, V. (1989). Introducing mechanics at the elementary school. Physics Education, 24(6), 348-52.
    Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617-645.
    Barsalou, L. W., Niedenthal, P. M., Barbey, A. K., & Ruppert, J. A. (2003). Social embodiment. Psychology of Learning and Motivation, 43, 43-92.
    Baviskar, S. N., Hartle, R. T., & Whitney, T. (2009). Essential criteria to characterize constructivist teaching: Derived from a review of the literature and applied to five constructivist‐teaching method articles. International Journal of Science Education, 31(4), 541-550.
    Billinghurst, M. (2002). Augmented reality in education. New Horizons for Learning, 12(5), 1-5.
    Bokosmaty, S., Mavilidi, M. F., & Paas, F. (2017). Making versus observing manipulations of geometric properties of triangles to learn geometry using dynamic geometry software. Computers & Education, 113, 313-326.
    Bower, M. & Sturman, D. (2015). What are the educational affordances of wearable technologies? Computers & Education, 88, 343-353.
    Bryan, R. R., Glynn, S. M., & Kittleson, J. M. (2011). Motivation, achievement, and advanced placement intent of high school students learning science. Science Education, 95(6), 1049-1065.
    Bujak, K. R., Radu, I., Catrambone, R., Macintyre, B., Zheng, R. & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education, 68, 536-544.
    Burdea, G. C. (1996). Force and touch feedback for virtual reality, Wiley Interscience.
    Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. BSCS, 5, 88-98.
    Chan, M. S. & Black, J. B. (2006). Direct-manipulation animation: Incorporating the haptic channel in the learning process to support middle school students in science learning and mental model acquisition. Proceedings of the International Conference of the Learning Sciences. Mahwah, NJ: LEA.
    Charles, D. & McAlister, M. (2004). Integrating ideas about invisible playgrounds from play theory into online educational digital games. In M. Rauterberg (Ed.), International Conference on Entertainment Computing (pp. 598-601). Eindhoven, Netherlands: Springer.
    Chen, M. P., Wong, Y. T., & Wang, L. C. (2014). Effects of type of exploratory strategy and prior knowledge on middle school students' learning of chemical formulas from a 3D role-playing game. Educational Technology Research and Development, 62(2), 163-185.
    Cheng, K. H. & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22(4), 449-462.
    Clarke, T., Ayres, P., & Sweller, J. (2005). The impact of sequencing and prior knowledge on learning mathematics through spreadsheet applications. Educational Technology Research and Development, 53(3), 15-24.
    Dalgarno, B. & Lee, M. J. (2010). What are the learning affordances of 3‐D virtual environments? British Journal of Educational Technology, 41(1), 10-32.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319-340.
    Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
    Deci, E. L., Vallerand, R. J., Pelletier, L. G., & Ryan, R. M. (1991). Motivation and education: The self-determination perspective. Educational Psychologist, 26(3-4), 325-346.
    Dewey, J. (1897). My pedagogic creed. In R. D. Archambault (Ed.), John Dewey on Educational: Selected writings (pp. 427-439). Chicago, IL: University of Chicago Press.
    Driver, R., Guesne, E., & Tiberghien, A. (1985). Children’s ideas and the learning of science. Children’s Ideas in Science, 1-9.
    Duit, R., Goldberg, F., & Nidderer, H. (1991). Research in physics learning: Theoretical issues and empirical studies. Kiel, Germany: IPN-University of Kiel.
    Enyedy, N., Danish, J. A., Delacruz, G., & Kumar, M. (2012). Learning physics through play in an augmented reality environment. International Journal of Computer-supported Collaborative Learning, 7(3), 347-378.
    Falloon, G. (2019). Using simulations to teach young students science concepts: An Experiential Learning theoretical analysis. Computers & Education, 135, 138-159.
    Garcia-Sanjuan, F., Jurdi, S., Jaen, J., & Nacher, V. (2018). Evaluating a tactile and a tangible multi-tablet gamified quiz system for collaborative learning in primary education. Computers & Education, 123, 65-84.
    Geary, D. C. (2007). Educating the evolved mind: Conceptual foundations for an evolutionary educational psychology. In J. S. Carlson & J. R. Levin (Eds.), Educating the evolved mind: Conceptual foundations for an evolutionary educational psychology (pp. 1-99). Greenwich, England: Information Age.
    Geary, D. C. (2008). An evolutionarily informed education science. Educational Psychologist, 43(4), 179-195.
    Gee, J. P. (2003). What video games have to teach us about learning and literacy. Computers in Entertainment (CIE), 1(1), 20-20.
    Gibbs, R. W. (2005). Embodiment and cognitive science. Cambridge, England: Cambridge University Press.
    Gilbert, J. K. & Watts, D. M. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10, 61-98.
    Glenberg, A. M. (1997). What memory is for. Behavioral and Brain Sciences, 20(1), 1-19.
    Gunstone, R. (1995). Constructivist learning and the teaching of science. In B. Hand & V. Prain (Eds.), Teaching and learning in science: The constructivist classroom (pp. 3-20). Sydney, Australia: Harcourt Brace.
    Hamari, J., Shernoff, D. J., Rowe, E., Coller, B., Asbell-Clarke, J., & Edwards, T. (2016). Challenging games help students learn: An empirical study on engagement, flow and immersion in game-based learning. Computers in Human Behavior, 54, 170-179.
    Han, I. & Black, J. B. (2011). Incorporating haptic feedback in simulation for learning physics. Computers & Education, 57(4), 2281-2290.
    Hannafin, M., Land, S., & Oliver, K. (1999). Open learning environments: Foundations, methods, and models. In C. M. Reigeluth (Ed.), Instructional-design theories and models: A new paradigm of instructional theory Vol. II (pp. 115-140). Mahwah, NJ: Lawrence Earlbaum Associates.
    Hew, K. F. & Cheung, W. S. (2014). Students’ and instructors’ use of massive open online courses (MOOCs): Motivations and challenges. Educational Research Review, 12, 45-58.
    Hill, J. R. & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology Research and Development, 49(3), 37-52.
    Holland, W., Jenkins, H., & Squire, K. (2003). Theory by design. In M. Wolf & B. Perron (Eds.), The video game theory reader (pp. 25-46). New York, NY: Routledge.
    Hong, J. C., Tsai, C. R., Hsiao, H. S., Chen, P. H., Chu, K. C., Gu, J., & Sitthiworachart, J. (2019). The effect of the “Prediction-observation-quiz-explanation” inquiry-based e-learning model on flow experience in green energy learning. Computers & Education, 133, 127-138.
    Huang, S. C., Vea, T., & Black, J. (2011). Learning abstract physics system with a 3-D force feedback joystick. In Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications 2011.
    Huang, T. C., Chen, C. C., & Chou, Y. W. (2016). Animating eco-education: To see, feel, and discover in an augmented reality-based experiential learning environment. Computers & Education, 96, 72-82.
    Hyland, P. (2000). Learning from feedback on assessment. In A. Booth & P. Hyland (Eds.), The practice of university history teaching (pp. 233-247). Manchester, England: Manchester University Press.
    Ibáñez, M. B., Di Serio, Á., Villarán, D., & Kloos, C. D. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71, 1-13.
    Jacobson, R. D., Kitchen, R., & Golledge, R. (2002). Multimodal virtual reality for presenting geographic information. In P. Fisher & D. Unwin (Eds.), Virtual reality in geography (pp. 382-401). London, England: Taylor and Francis.
    Jimoyiannis, A. & Komis, V. (2001). Computer simulations in physics teaching and learning: A case study on students' understanding of trajectory motion. Computers & Education, 36(2), 183-204.
    Jones, M. G., Andre, T., Superfine, R., & Taylor, R. (2003). Learning at the nanoscale: The impact of students' use of remote microscopy on concepts of viruses, scale, and microscopy. Journal of Research in Science Teaching, 40(3), 303-322.
    Jones, M. G., Minogue, J., Tretter, T. R., Negishi, A., & Taylor, R. (2006). Haptic augmentation of science instruction: Does touch matter? Science Education, 90(1), 111-123.
    Kátai, Z., Juhász, K., & Adorjáni, A. K. (2008). On the role of senses in education. Computers & Education, 51(4), 1707-1717.
    King, W. R. & He, J. (2006). A meta-analysis of the technology acceptance model. Information & Management, 43(6), 740-755.
    Kofman, F. (1992). Lecture slides. Unpublished master thesis, MIT Sloan School of Management, Cambridge.
    Kolb, A. Y. & Kolb, D. A. (2009). Experiential learning theory: A dynamic, holistic approach to management learning, education and development. In S. J. Armstrong & C. V. Fukami (Eds.), The SAGE handbook of management learning, education and development (pp. 42-68). London, England: Sage.
    Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs, NJ: Prentice Hall.
    Kye, B. & Kim, Y. (2008). Investigation of the relationships between media characteristics, presence, flow, and learning effects in augmented reality based learning. International Journal for Educational Media and Technology, 2(1).
    Lakoff, G. & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought (Vol. 28). New York, NY: Basic books.
    Law, V. & Chen, C. H. (2016). Promoting science learning in game-based learning with question prompts and feedback. Computers & Education, 103, 134-143.
    Lee, E. & Hannafin, M. J. (2016). A design framework for enhancing engagement in student-centered learning: Own it, learn it, and share it. Educational Technology Research and Development, 64(4), 707-734.
    Lee, E. A. L., Wong, K. W., & Fung, C. C. (2010). How does desktop virtual reality enhance learning outcomes? A structural equation modeling approach. Computers & Education, 55(4), 1424-1442.
    Lindgren, R. & Johnson-Glenberg, M. (2013). Emboldened by embodiment: Six precepts for research on embodied learning and mixed reality. Educational Researcher, 42(8), 445-452.
    Mayer, R. E. (2005). The Cambridge handbook of multimedia learning. Cambridge, England: Cambridge university press.
    McNamara, D. S. & Kintsch, W. (1996). Learning from texts: Effects of prior knowledge and text coherence. Discourse Processes, 22(3), 247-288.
    Milgram, P. & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
    Minogue, J. & Jones, M. G. (2006). Haptics in education: Exploring an untapped sensory modality. Review of Educational Research, 76(3), 317-348.
    Oh, S., So, H. J., & Gaydos, M. (2017). Hybrid augmented reality for participatory learning: The hidden efficacy of multi-user game-based simulation. IEEE Transactions on Learning Technologies, 11(1), 115-127.
    Paas, F. & Sweller, J. (2012). An evolutionary upgrade of cognitive load theory: Using the human motor system and collaboration to support the learning of complex cognitive tasks. Educational Psychology Review, 24(1), 27-45.
    Palincsar, A. S. (1998). Keeping the metaphor of scaffolding fresh—-a response to C. Addison Stone's “The metaphor of scaffolding: Its utility for the field of learning disabilities”. Journal of Learning Disabilities, 31(4), 370-373.
    Palincsar, A. S., Fitzgerald, M. S., Marcum, M. B., & Sherwood, C. A. (2018). Examining the work of “scaffolding” in theory and practice: A case study of 6th graders and their teacher interacting with one another, an ambitious science curriculum, and mobile devices. International Journal of Educational Research, 90, 191-208.
    Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. The Journal of The Learning Sciences, 13(3), 423-451.
    Piaget, J. (1952). The origins of intelligence in children. New York, NY: International Universities Press.
    Pritchard, A. & Woollard, J. (2010). Psychology for the classroom: Constructivism and social learning. London, England: Routledge.
    Puntambekar, S. & Hubscher, R. (2005). Tools for scaffolding students in a complex learning environment: What have we gained and what have we missed? Educational Psychologist, 40(1), 1-12.
    Reigosa, C. & Jiménez‐Aleixandre, M. P. (2007). Scaffolded problem‐solving in the physics and chemistry laboratory: difficulties hindering students’ assumption of responsibility. International Journal of Science Education, 29(3), 307-329.
    Révész, G. (1950). Psychology and art of the blind. New York, NY: Longmans Green.
    Robles-De-La-Torre, G. (2006). The importance of the sense of touch in virtual and real environments. IEEE Multimedia Special Issue on Haptic User Interfaces for Multimedia Systems, 13(3), 24-30.
    Roth, A. E. (1991). A natural experiment in the organization of entry-level labor markets: regional markets for new physicians and surgeons in the United Kingdom. The American Economic Review, 81, 415-440.
    Schecker, H. & Niedderer, H. (1996). Contrastive teaching: A strategy to promote qualitative conceptual understanding of science. In D. F. Treagust, R. Duit, & B. J. Fraser (Eds.), Improving teaching and learning in science and mathematics (pp. 141-151). New York, NY: Teachers College Press.
    Schecker, H. (1985). Students’ matrices of understanding in mechanics. Unpublished doctoral dissertation, University of Bremen, Bremen.
    Schein, E. H. (1993). How can organizations learn faster? The challenge of entering the green room. Sloan Management Review, 34(2), 85-92.
    Schunk, D. H., Pintrich, P. R„ & Meece, J. L. (2008). Motivation in education: Theory, research, and applications (3rd ed.). Upper Saddle River, NJ: Pearson Education.
    Shute, V. J., Rieber, L., & Van Eck, R. (2011). Games … and … learning. In R. Reiser & J. Dempsey (Eds.), Trends and issues in instructional design and technology (3rd ed., pp. 321-332). Upper Saddle River, NJ: Pearson Education.
    Siegler, R. S. (1978). Childrens thinking: what develops? Hillsdale. MI: Lawrence Erlbaum Assoc. Ltd.
    Smith, L. & Gasser, M. (2005). The development of embodied cognition: Six lessons from babies. Artificial Life, 11(1-2), 13-29.
    Srinivasan, M. A. & Basdogan, C. (1997). Haptics in virtual environments: Taxonomy, research status, and challenges. Computers & Graphics, 21(4), 393-404.
    Stålbrandt, E. E. & Hössjer, A. (2007). Scaffolding and interventions between students and teachers in a Learning Design Sequence. Psicologia Escolar e Educacional, 11, 37-48.
    Stepans, J. (1996). Targeting students' science misconceptions. Riverview, FL: Idea Factory, Inc.
    Tabachnick, B. G. & Fidell, L. S. (2001). Using Multivariate Statistics. Boston, MA: Allyn and Bacon.
    Treagust, D. F., Duit, R. & Fraser, B. J. (Eds.) (1996). Improving Teaching and Learning in Science and Mathematics. New York, NY: Teachers College Press.
    Treagust, D. F., Mthembu, Z., & Chandrasegaran, A. L. (2014). Evaluation of the predict-observe-explain instructional strategy to enhance students’ understanding of redox reactions. In Learning with understanding in the chemistry classroom (pp. 265-286). Dordrecht, Netherlands: Springer.
    Tuan, H. L., Chin, C. C., & Shieh, S. H. (2005). The development of a questionnaire to measure students' motivation towards science learning. International Journal of Science Education, 27(6), 639-654.
    Ustunel, H. H. & Tokel, S. T. (2018). Distributed scaffolding: Synergy in technology-enhanced learning environments. Technology, Knowledge and Learning, 23(1), 129-160.
    Vitale, J. M., Swart, M. I., & Black, J. B. (2014). Integrating intuitive and novel grounded concepts in a dynamic geometry learning environment. Computers & Education, 72, 231-248.
    Wang, L. C. & Chen, M. P. (2010). The effects of game strategy and preference-matching on flow experience and programming performance in game-based learning. Innovations in Education and Teaching International, 47(1), 39-52.
    White, B. Y. & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16, 3-118.
    White, R. & Gunstone, R. (2014). Probing understanding. London, England: Falmer Press
    Wiebe, E. N., Minogue, J., Jones, M. G., Cowley, J., & Krebs, D. (2009). Haptic feedback and students’ learning about levers: Unraveling the effect of simulated touch. Computers & Education, 53(3), 667-676.
    Williams, R. L., Chen, M. Y., & Seaton, J. M. (2003). Haptics-augmented simple-machine educational tools. Journal of Science Education and Technology, 12(1), 1-12.
    Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9(4), 625-636.
    Wong, A., Marcus, N., Ayres, P., Smith, L., Cooper, G. A., Paas, F., & Sweller, J. (2009). Instructional animations can be superior to statics when learning human motor skills. Computers in Human Behavior, 25(2), 339-347.
    Wood, D. J., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89-100.
    Wu, H. L. & Pedersen, S. (2011). Integrating computer- and teacher-based scaffolds in science inquiry. Computers & Education, 57(4), 2352-2363.
    Young, M. F., Slota, S., Cutter, A. B., Jalette, G., Mullin, G., Lai, B., … & Yukhymenko, M. (2012). Our princess is in another castle: A review of trends in serious gaming for education. Review of Educational Research, 82(1), 61-89.

    下載圖示
    QR CODE