研究生: |
鄭稚勇 Cheng, Chih-Yung |
---|---|
論文名稱: |
缺血預處理對Yo-Yo間歇恢復測驗表現之影響 Effect of Ischemic Preconditioning on Yo-Yo Intermittent Recovery Test Performance |
指導教授: |
鄭景峰
Cheng, Ching-Feng |
口試委員: |
郭堉圻
Kuo, Yu-Chi 何仁育 Ho, Jen-Yu 鄭景峰 Cheng, Ching-Feng |
口試日期: | 2022/01/14 |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 熱身運動 、血流阻斷 、遞增負荷測驗 、肌肉氧飽和度 |
英文關鍵詞: | warm-up, blood occlusion, graded exercise test, muscle oxygenation |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202200427 |
論文種類: | 學術論文 |
相關次數: | 點閱:207 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:探討缺血預處理 (ischemic preconditioning, IPC) 對Yo-Yo間歇恢復第一級 (Yo-Yo intermittent recovery level 1, Yo-Yo IR1) 測驗表現之影響。方法:招募12名大專男性甲組橄欖球選手,在實施Yo-Yo IR1測驗前,利用隨機分派及平衡次序方式,分別執行IPC (4 × 5-min 220 mmHg雙側大腿加壓)、偽處理 (SHAM, 4 × 5-min 20 mmHg雙側大腿加壓),以及控制處理 (CON)。並記錄Yo-Yo IR1測驗過程中之完成趟數、完成距離、衰竭時間,以及監測攝氧量 (oxygen uptake, VO2)、攝氧峰值 (VO2peak)、心跳率上升趨勢 (heart rate/4i, HR/4i) 與運動強度自覺程度上升趨勢 (rating of perceived exertion/4i, RPE/4i) 等生理指標;利用近紅外線光譜儀監測整個實驗過程股四頭肌的肌肉氧飽和度。結果:IPC與SHAM之Yo-Yo IR1測驗表現皆顯著高於CON,包含完成距離 (IPC vs. SHAM vs. CON, 1813.3 ± 381.9 vs. 1793.3 ± 335.5 vs. 1680.0 ± 324.5 m) 與衰竭時間 (IPC vs. SHAM vs. CON, 886.5 ± 179.0 vs. 877.5 ± 157.5 vs. 823.9 ± 153.1 s),而IPC與SHAM則無顯著差異。在Yo-Yo IR1測驗時,IPC與SHAM的RPE/4i顯著低於CON (IPC vs. SHAM vs. CON, 1.2 ± 0.3 vs. 1.1 ± 0.5 vs. 1.4 ± 0.4 au),不過,在HR/4i、VO2peak、VO2等生理指標,以及肌肉氧飽和度指標,在三種實驗處理之間並無顯著差異。結論:大專橄欖球選手執行IPC (4 × 5-min雙側大腿) 可能提升Yo-Yo IR1運動表現,並降低運動過程中RPE,但仍無法完全排除安慰劑效應。
Purpose: To investigate the effect of ischemic preconditioning (IPC) on performance of Yo-Yo intermittent recovery level 1 (Yo-Yo IR1) test. Methods: In a randomized, counter-balanced study, 12 division I collegiate male rugby players performed Yo-Yo IR1 test, which were preceded by IPC (4 × 5-min 220 mmHg bilateral thighs occlusion), SHAM (4 × 5-min 20 mmHg bilateral thighs occlusion), or control (CON) treatments. The covered shuttles, distances, duration, oxygen uptake (VO2), peak oxygen uptake (VO2peak), heart rate/4i (HR/4i), and rating of perceived exertion/4i (RPE/4i) were measured during the Yo-Yo IR1 test. Changes in muscle oxygenation of quadriceps were continuously monitored by near-infrared spectroscopy throughout the trials. Results: The Yo-Yo IR1 test performances of IPC and SHAM were both significantly higher than CON, including covered distances (IPC vs. SHAM vs. CON, 1813.3 ± 381.9 vs. 1793.3 ± 335.5 vs. 1680.0 ± 324.5 m) and time to exhaustion (IPC vs. SHAM vs. CON, 886.5 ± 179.0 vs. 877.5 ± 157.5 vs. 823.9 ± 153.1 s). However, no significant differences were found betwwen IPC and SHAM. The RPE/4i of IPC and SHAM were both significantly lower than CON (IPC vs. SHAM vs. CON, 1.2 ± 0.3 vs. 1.1 ± 0.5 vs. 1.4 ± 0.4 au) in the Yo-Yo IR1 test. There were no significant differences in HR/4i, VO2peak, VO2, and changes in muscle oxygenation among three treatments. Conclusion: The usage of IPC (4 × 5-min bilateral thighs) in collegiate rugby players might enhance Yo-Yo IR1 test performance and reduce RPE during exerciese. However, placebo effect of IPC could not be entirely ruled out.
Addison, P. D., Neligan, P. C., Ashrafpour, H., Khan, A., Zhong, A., Moses, M., ... & Pang, C. Y. (2003). Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. American Journal of Physiology-Heart and Circulatory Physiology, 285(4), H1435-H1443. doi: 10.1152/ajpheart.00106.2003
Amann, M., Hopkins, W. G., & Marcora, S. M. (2008). Similar sensitivity of time to exhaustion and time-trial time to changes in endurance. Medicine and Science in Sports and Exercise, 40(3), 574-578. doi: 10.1249/MSS.0b013e31815e728f
Andreas, M., Schmid, A. I., Keilani, M., Doberer, D., Bartko, J., Crevenna, R., ... & Wolzt, M. (2011). Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: A randomized crossover trial. Journal of Cardiovascular Magnetic Resonance, 13(1), 32. doi: 10.1186/1532-429X-13-32
Attkiss, K. J., Suski, M., Hunt, T. K., & Buncke, H. J. (1999). Ischemic preconditioning of skeletal muscle improves tissue oxygenation during reperfusion. Journal of Reconstructive Microsurgery, 15(3), 223-228. doi: 10.1055/s-2007-1000095
Bailey, T. G., Jones, H., Gregson, W., Atkinson, G., Cable, N. T., & Thijssen, D. H. (2012). Effect of ischemic preconditioning on lactate accumulation and running performance. Medicine and Science in Sports and Exercise, 44(11), 2084-2089. doi: 10.1249/MSS.0b013e318262cb17
Ballmann, C., Hotchkiss, H., Marshall, M., & Rogers, R. (2019). The effect of wearing a lower body compression garment on anaerobic exercise performance in division I NCAA basketball players. Sports, 7(6), 144. doi: 10.3390/sports7060144
Banks, L., Wells, G. D., Clarizia, N. A., Jean-St-Michel, E., McKillop, A. L., Redington, A. N., & McCrindle, B. W. (2016). Short-term remote ischemic preconditioning is not associated with improved blood pressure and exercise capacity in young adults. Applied Physiology, Nutrition, and Metabolism, 41(8), 903-906. doi: 10.1139/apnm-2016-0024
Bangsbo, J. (1996). Yo-Yo Test. Ancona: Kells.
Bangsbo, J., Iaia, F. M., & Krustrup, P. (2008). The Yo-Yo intermittent recovery test. Sports Medicine, 38(1), 37-51. doi: 10.2165/00007256-200838010-00004
Barbosa, T. C., Machado, A. C., Braz, I. D., Fernandes, I. A., Vianna, L. C., Nobrega, A. C. L., & Silva, B. M. (2015). Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scandinavian Journal of Medicine and Science in Sports, 25(3), 356-364. doi: 10.1111/sms.12229
Barnes, K. R., & Kilding, A. E. (2015). Running economy: Measurement, norms, and determining factors. Sports Medicine-Open, 1(1), 1-15. doi: 10.1186/s40798-015-0007-y
Bassett, D. R., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and Science in Sports and Exercise, 32(1), 70-84. doi: 10.1097/00005768-200001000-00012
Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377-381. doi: 10.1249/00005768-198205000-00012
Brietzke, C., Asano, R. Y., De Russi de Lima, F., Pinheiro, F. A., Franco-Alvarenga, Ugrinowitsch, C., & Pires, F. O. (2017). Caffeine effects on VO2max test outcomes investigated by a placebo perceived-as-caffeine design. Nutrition and Health, 23(4), 231-238. doi: 10.1177/0260106017723547
Cheng, C. F., Kuo, Y. H., Hsu, W. C., Chen, C., & Pan, C. H. (2021). Local and Remote Ischemic Preconditioning Improves Sprint Interval Exercise Performance in Team Sport Athletes. International Journal of Environmental Research and Public Health, 18(20), 10653. doi: 10.3390/ijerph182010653
Cheung, C. P., Slysz, J. T., & Burr, J. F. (2020). Ischemic preconditioning: Improved cycling performance despite nocebo expectation. International Journal of Sports Physiology and Performance, 15(3), 354-360. doi: 10.1123/ijspp.2019-0290
Clevidence, M. W., Mowery, R. E., & Kushnick, M. R. (2012). The effects of ischemic preconditioning on aerobic and anaerobic variables associated with submaximal cycling performance. European Journal of Applied Physiology, 112(10), 3649-3654. doi: 10.1007/s00421-012-2345-5
Crisafulli, A., Tangianu, F., Tocco, F., Concu, A., Mameli, O., Mulliri, G., & Caria, M. A. (2011). Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. Journal of Applied Physiology, 111(2), 530-536. doi: 10.1152/japplphysiol.00266.2011
Cruz, R. S., de Aguiar, R. A., Turnes, T., Pereira, K. L., & Caputo, F. (2015). Effects of ischemic preconditioning on maximal constant-load cycling performance. Journal of Applied Physiology, 119(9), 961-967. doi: 10.1152/japplphysiol.00498
de Groot, P. C., Thijssen, D. H., Sanchez, M., Ellenkamp, R., & Hopman, M. T. (2010). Ischemic preconditioning improves maximal performance in humans. European Journal of Applied Physiology, 108(1), 141-146. doi: 10.1007/s00421-009-1195-2
Duncan, M. J., Lyons, M., & Hankey, J. (2009). Placebo effects of caffeine on short-term resistance exercise to failure. International Journal of Sports Physiology and Performance, 4(2), 244-253. doi: 10.1123/ijspp.4.2.244
Eisen, A., Fisman, E. Z., Rubenfire, M., Freimark, D., McKechnie, R., Tenenbaum, A., ... & Adler, Y. (2004). Ischemic preconditioning: Nearly two decades of research. A comprehensive review. Atherosclerosis, 172(2), 201-210. doi: 10.1016/S0021-9150(03)00238-7
Foster, C., Florhaug, J. A., Franklin, J., Gottschall, L., Hrovatin, L. A., Parker, S., ... & Dodge, C. (2001). A new approach to monitoring exercise training. The Journal of Strength and Conditioning Research, 15(1), 109-115. doi: 10.1519/1533-4287(2001)015<0109:anatme>2.0.co;2
George, J. D., Bradshaw, D. I., Hyde, A., Vehrs, P. R., Hager, R. L., & Yanowitz, F. G. (2007). A maximal graded exercise test to accurately predict VO2max in 18–65-year-old adults. Measurement in Physical Education and Exercise Science, 11(3), 149-160. doi: 10.1080/10913670701326427
Gibson, N., White, J., Neish, M., & Murray, A. (2013). Effect of ischemic preconditioning on land-based sprinting in team-sport athletes. International Journal of Sports Physiology and Performance, 8(6), 671-676. doi:10.1123/ijspp.8.6.671
Gifford, J. R., Garten, R. S., Nelson, A. D., Trinity, J. D., Layec, G., Witman, M. A., ... & Richardson, R. S. (2016). Symmorphosis and skeletal muscle: In vivo and in vitro measures reveal differing constraints in the exercise‐trained and untrained human. Journal of Physiology, 594(6), 1741-1751. doi: 10.1113/JP271229
Griffin, P. J., Hughes, L., Gissane & Patterson, S. D. (2018). Effect of local versus remote ischemic preconditioning on repeated sprint running performance. Journal of Sports Medicine and Physical Fitness, 59(2), 187-194. doi: 10.23736/S0022-4707.18.08400-1
Gomma, A. H., Purcell, H. J., & Fox, K. M. (2001). Potassium channel openers in myocardial ischaemia. Drugs, 61(12), 1705-1710. doi: 10.2165/00003495-200161120-00002
Higham, D. G., Pyne, D. B., Anson, J. M., & Eddy, A. (2013). Physiological, anthropometric, and performance characteristics of rugby sevens players. International Journal of Sports Physiology and Performance, 8(1), 19-27. doi: 10.1123/ijspp.8.1.19
Hittinger, E. A., Maher, J. L., Nash, M. S., Perry, A. C., Signorile, J. F., Kressler, J., & Jacobs, K. A. (2015). Ischemic preconditioning does not improve peak exercise capacity at sea level or simulated high altitude in trained male cyclists. Applied Physiology, Nutrition, and Metabolism, 40(1), 65-71. doi: 10.1139/apnm-2014-0080
Hopkins, W. G., Hawley, J. A., & Burke, L. M. (1999). Design and analysis of research on sport performance enhancement. Medicine and Science in Sports and Exercise, 31(3), 472-485. doi: 10.1097/00005768-199903000-00018.
Hurst, P., Schipof-Godart, L., Szabo, A., Raglin, J., Hettinga, F., Roelands, B., ... & Beedie, C. (2020). The placebo and nocebo effect on sports performance: A systematic review. European Journal of Sport Science, 20(3), 279-292. doi: 10.1080/17461391.2019.1655098
James, C. A., Willmott, A. G., Richardson, A. J., Watt, P. W., & Maxwell, N. S. (2016). Ischaemic preconditioning does not alter the determinants of endurance running performance in the heat. European Journal of Applied Physiology, 116(9), 1735-1745. doi: 10.1007/s00421-016-3430-y
Jean-St-Michel, E., Manlhiot, C., Li, J., Tropak, M., Michelsen, M. M., Schmidt, M. R., ... & Redington, A. N. (2011). Remote preconditioning improves maximal performance in highly trained athletes. Medicine and Science in Sports and Exercise, 43(7), 1280-1286. doi: 10.1249/MSS.0b013e318206845d
Jeffries, O., Evans, D. T., Waldron, M., Coussens, A., & Patterson, S. D. (2019). Seven-day ischaemic preconditioning improves muscle efficiency during cycling. Journal of Sports Sciences, 37(24), 2798-2805. doi: 10.1080/02640414.2019.1664537
Kaur, G., Binger, M., Evans, C., Trachte, T., & Van Guilder, G. P. (2017). No influence of ischemic preconditioning on running economy. European Journal of Applied Physiology, 117(2), 225-235. doi: 10.1007/s00421-016-3522-8
Kido, K., Suga, T., Tanaka, D., Honjo, T., Homma, T., Fujita, S., ... & Isaka, T. (2015). Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work‐to‐work test. Physiological Reports, 3(5), e12395. doi: 10.14814/phy2.12395
Kilding, A. E., Sequeira, G. M., & Wood, M. R. (2018). Effects of ischemic preconditioning on economy, VO2 kinetics and cycling performance in endurance athletes. European Journal of Applied Physiology, 118(12), 2541-2549. doi: 10.1007/s00421-018-3979-8
Kimura, M., Ueda, K., Goto, C., Jitsuiki, D., Nishioka, K., Umemura, T., ... & Higashi, Y. (2007). Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: Role of endothelium-derived nitric oxide and endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(6), 1403-1410. doi: 10.1161/ATVBAHA.107.143578
Krustrup, P., Mohr, M., Amstrup, T., Rysgaard, T., Johansen, J., Steensberg, A., ... & Bangsbo, J. (2003). The yo-yo intermittent recovery test: physiological response, reliability, and validity. Medicine and Science in Sports and Exercise, 35(4), 697-705. doi: 10.1249/01.MSS.0000058441.94520.32
Lawson, C. S., & Downey, J. M. (1993). Preconditioning: State of the art myocardial protection. Cardiovascular Research, 27(4), 542-550. doi: 10.1093/cvr/27.4.542
Lindsay, A., Petersen, C., Blackwell, G., Ferguson, H., Parker, G., Steyn, N., & Gieseg, S. P. (2017). The effect of 1 week of repeated ischaemic leg preconditioning on simulated Keirin cycling performance: A randomised trial. BMJ Open Sport and Exercise Medicine, 3(1), e000229. doi: 10.1136/bmjsem-2017-000229
Marocolo, M., da Mota, G. R., Pelegrini, V., & Appell Coriolano, H. J. (2015). Are the beneficial effects of ischemic preconditioning on performance partly a placebo effect?. International Journal of Sports Medicine, 94(10), 822-825. doi: 10.1055/s-0035-1549857
Marocolo, M., da Mota, G. R., Simim, M. A. M., & Coriolano, H. J. A. (2016). Myths and facts about the effects of ischemic preconditioning on performance. International Journal of Sports Medicine, 37(2), 87-96. doi: 10.1055/s-0035-1564253
Marocolo, M., Willardson, J. M., Marocolo, I. C., da Mota, G. R., Simão, R., & Maior, A. S. (2016). Ischemic preconditioning and placebo intervention improves resistance exercise performance. Journal of Strength and Conditioning Research, 30(5), 1462-1469. doi: 10.1519/JSC.0000000000001232
Marocolo, I. C., da Mota, G. R., Londe, A. M., Patterson, S. D., Neto, O. B., & Marocolo, M. (2017). Acute ischemic preconditioning does not influence high-intensity intermittent exercise performance. PeerJ, 5, e4118. doi: 10.7717/peerj.4118
McIlvenna, L. C., Muggeridge, D. J., Forrest, L. J., Monaghan, C., Liddle, L., Burleigh, M. C., ... & Easton, C. (2019). Lower limb ischemic preconditioning combined with dietary nitrate supplementation does not influence time-trial performance in well-trained cyclists. Journal of Science and Medicine in Sport, 22(7), 852-857. doi: 10.1016/j.jsams.2019.01.011
Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124-1136. doi: 10.1161/01.CIR.74.5.1124
Pang, C. Y., Yang, R. Z., Zhong, A., Xu, N., Boyd, B., & Forrest, C. R. (1995). Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovascular Research, 29(6), 782-788. doi: 10.1016/S0008-6363(96)88613-5
Paradis-Deschênes, P., Joanisse, D. R., & Billaut, F. (2016). Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes. Applied Physiology, Nutrition, and Metabolism, 41(9), 938-944. doi: 10.1139/apnm-2015-0561
Paradis-Deschênes, P., Joanisse, D. R., & Billaut, F. (2018). Ischemic preconditioning improves time trial performance at moderate altitude. Medicine and Science in Sports and Exercise, 50(3), 533-541. doi: 10.1249/MSS.0000000000001473
Patterson, S. D., Bezodis, N. E., Glaister, M., & Pattison, J. R. (2015). The effect of ischemic preconditioning on repeated sprint cycling performance. Medicine and Science in Sports and Exercise, 47(8), 1652-1658. doi: 10.1249/MSS.0000000000000576
Riechman, S. E., Zoeller, R. F., Balasekaran, G., Goss, F. L., & Robertson, R. J. (2002). Prediction of 2000 m indoor rowing performance using a 30 s sprint and maximal oxygen uptake. Journal of Sports Sciences, 20(9), 681-687. doi: 10.1080/026404102320219383
Sabino-Carvalho, J. L., Lopes, T. R., Obeid-Freitas, T., Ferreira, T. N., Succi, J. E., Silva, A. C., & Silva, B. M. (2017). Effect of ischemic preconditioning on endurance performance does not surpass placebo. Medicine and Science in Sports and Exercise, 49(1), 124-132. doi: 10.1249/MSS.0000000000001088
Salvador, A. F., De Aguiar, R. A., Lisbôa, F. D., Pereira, K. L., Rogério, S. D., & Caputo, F. (2016). Ischemic preconditioning and exercise performance: A systematic review and meta-analysis. International Journal of Sports Physiology and Performance, 11(1), 4-14. doi: 10.1123/ijspp.2015-0204
Schmitz, B., Pfeifer, C., Thorwesten, L., Krüger, M., Klose, A., & Brand, S. M. (2020). Yo-yo intermittent recovery level 1 test for estimation of peak oxygen uptake: Use without restriction?. Research Quarterly for Exercise and Sport, 91(3), 478-487. doi: 10.1080/02701367.2019.1684432
Sharkey, B. J., & Gaskill, S. E. (2006). Sport physiology for coaches. Champaign, IL, Human Kinetics.
Sheel, A. W., Boushel, R., & Dempsey, J. A. (2018). Competition for blood flow distribution between respiratory and locomotor muscles: Implications for muscle fatigue. Journal of Applied Physiology, 125(3), 820-831. doi: 10.1152/japplphysiol.00189.2018
Slysz, J. T., & Burr, J. F. (2018). Enhanced metabolic stress augments ischemic preconditioning for exercise performance. Frontiers in Physiology, 9, 1621. doi: 10.3389/fphys.2018.01621
Stokfisz, K., Ledakowicz-Polak, A., Zagorski, M., & Zielinska, M. (2017). Ischaemic preconditioning–Current knowledge and potential future applications after 30 years of experience. Advances in Medical Sciences, 62(2), 307-316. doi: 10.1016/j.advms.2016.11.006
Stone, N. M., & Kilding, A. E. (2009). Aerobic conditioning for team sport athletes. Sports Medicine, 39(8), 615-642. doi: 10.2165/00007256-200939080-00002
Tanaka, D., Suga, T., Tanaka, T., Kido, K., Honjo, T., Fujita, S., ... & Isaka, T. (2016). Ischemic preconditioning enhances muscle endurance during sustained isometric exercise. International Journal of Sports Medicine, 37(8), 614-618. doi: 10.1055/s-0035-1565141
Thomas, R., & Stephane, P. (2008). Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. European Journal of Applied Physiology, 102(2), 153-163. doi: 10.1007/s00421-007-0568-7
Tong, T. K., Fu, F. H., Chung, P. K., Eston, R., Lu, K., Quach, B., ... & So, R. (2008). The effect of inspiratory muscle training on high-intensity, intermittent running performance to exhaustion. Applied Physiology, Nutrition, and Metabolism, 33(4), 671-681. doi: 10.1139/H08-050
Wen, D., Utesch, T., Wu, J., Robertson, S., Liu, J., Hu, G., & Chen, H. (2019). Effects of different protocols of high intensity interval training for VO2max improvements in adults: A meta-analysis of randomised controlled trials. Journal of Science and Medicine in Sport, 22(8), 941-947. doi: 10.1016/j.jsams.2019.01.013
Wiggins, C. C., Constantini, K., Paris, H. L., Mickleborough, T. D., & Chapman, R. F. (2019). Ischemic preconditioning, O2 kinetics, and performance in normoxia and hypoxia. Medicine and Science in Sports and Exercise, 51(5), 900-911. doi: 10.1249/MSS.0000000000001882