簡易檢索 / 詳目顯示

研究生: 張閔翔
Zhang, Min-Xiang
論文名稱: 中學生二次函數學習進程之探究
The Study of Secondary Students’ Learning Progression for Quadratic Functions
指導教授: 譚克平
Tam, Hak-Ping
楊凱琳
Yang, Kai-Lin
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 101
中文關鍵詞: 學習進程二次函數
英文關鍵詞: learning progression, quadratic function
DOI URL: http://doi.org/10.6345/NTNU201900354
論文種類: 學術論文
相關次數: 點閱:165下載:46
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在建立二次函數的學習進程,協助學習進程的使用者瞭解學習者對於二次函數相關概念的掌握順序,提供使用者一個參考去設計合適的教學活動,使學習者更能掌握二次函數的概念。基於此目的,本研究主要的研究問題為:「我國中學生對於二次函數的學習進程內容為何?」
    為了回答研究問題,本研究採用文獻分析法、質性訪談以及問卷調查法,並經歷探索期、調整期以及驗證期三個階段得到研究結果。
    探索期之研究的目的在於熟悉學習進程的建立方法,以及蒐集學生在學習二次函數時可能有的學習表現。此時期利用文獻分析法瞭解過去相關研究中學生有的學習表現,設計訪談稿後,藉由質性訪談,訪談了6位台北市十年級的學生以及2位台中市十一年級的學生,而後建立了初步的學習進程。根據學習進程,研究者開發評量試卷,蒐集了台中市42位十年級的學生以及38位十一年級的學生的學習表現資料,由於此試卷未做信效度的檢驗,且學生填答情形不如預期,僅作為蒐集學生的學習表現用。
    調整期之研究的目的在於解決探索期所遇到的困難,並調整二次函數學習進程的內容。此時期增加了對學習進程理論文獻的探討量,也利用文獻分析法瞭解更多學生在學習二次函數時可能有的學習表現,並提出一個新的初步的學習進程。
    驗證期之研究的目的在於驗證研究者所開發的學習進程之有效性,並嘗試提出更能描述學生在學習二次函數時的學習進程。此時期利用問卷調查法,根據調整期所提出的學習進程設計評量試卷,針對北北基八到十二年級的學生進行施測,蒐集了共604位學生的資料,由於試卷設計的緣故僅分析了399位高中學生的資料。另外,利用質性訪談的方式,邀請五位有經驗的現場教師進行排序活動,作為效化的證據之一。
    本研究所建立之初步的二次函數學習進程共有六個等級(等級0~等級5),內容包含二次函數的定義、作圖、係數意義、幾何變換、極值、對稱。利用蒐集到的學生資料僅能將13.67%的學生歸到對應的等級,利用教師所排序的資料,在完全一致率僅達到24.3%~48.8%,若考慮差一個等級的一致率可達68.3%~87.8%,本研究所建立之初步的學習進程仍有調整的空間。研究者根據學生資料,將等級4與等級5合併,並刪除了學生進行幾何變換時的思維的相關描述後,能將63.04%的學生歸到對應的等級。研究者並根據教師資料,將幾何變換時的思維的相關描述放回調整後的學習進程之中。由於研究者對於教師資料的處理尚未釐出頭緒,因此,以學生資料為主、教師資料為輔調整二次函數的學習進程,教師資料的使用有待研究者日後做更進一步的分析。
    本研究所建立之二次函數學習進程仍有很大改善的空間,但已能供使用者做一個參考,在教學上更去注意學生認知的發展。此外,本研究有別於過往的學習進程研究,利用現場教師的資料進行效化,雖然在教師資料的使用上還不夠好,但已是一個突破,可供未來建立學習進程的研究者作為一個參考。

    關鍵字:學習進程、二次函數。

    The purpose of this study is to depict the learning progression for quadratic functions of secondary students in Taiwan. Through this learning progression, we hope to assist the users to understand the sequence how the learners grasp the concepts of quadratic functions, and to offer the users a reference for designing appropriate learning activities; thus, the learners can learn the concepts of quadratic functions more efficiently and better. Based on this purpose, our main research question is “what the content of the learning progression for quadratic functions of secondary students in Taiwan?”
    In order to answer the research question, we used literature analysis, qualitative interview and questionnaire, and went through three periods to obtain the results.
    First period is exploration period. The purpose of exploration period is to make us familiar with the method of depicting a learning progression, and to collect the probable learning performance when secondary students learn the concepts of quadratic functions. We used literature analysis to understand what the mathematicians and the educators expected students to learn, what content students really contacted with, and what kind of error students had through the past study. Then, we designed a draft for interview, and interviewed 8 students in total. Finally, we depicted an initial learning progression for quadratic functions. To validate the learning progression, we developed an assessment and collected the data of forty-two 16-year-old students and thirty-eight 17-year-old students. Since we didn’t test the validity and reliability of this assessment, we only collected the data in qualitative analysis rather than quantitative analysis.
    Second period is adjustment period. The purpose of adjustment period is to solve the challenge we faced in exploration period, and to adjust the content of the learning progression for quadratic functions. We reviewed more literature to understand the learning progression theory and to understand what kind of learning performance students had in the past research. Finally, we depicted a new initial learning progression for quadratic functions.
    To validate this new initial learning progression, we came to the third period, validation period. We used questionnaire and developed a new assessment based on the new initial learning progression. After testing the validity and reliability of this assessment, we collected the data of 604 students, through 14-year-old to 18-year-old, and finally analyzed the data of 399 senior high school students because of bad design of assessment for junior high school students. In addition, we used qualitative interview and invited five veterans of mathematics teachers to arrange 41 descriptions in our learning progression as one of evidence for validation.
    There are six levels, from 0 to 5, in our new initial learning progression for quadratic functions with the concepts including definition, graphing, the meaning of coefficients, transformations, extreme values and symmetry of quadratic functions. However, we could only depict 13.67% students in our data with this learning progression, and had 24.3 to 48.8 percent exact agreement and 68.3 to 87.8 percent adjacent agreement with five veterans of mathematics teachers. This informs us of the room of improvement of our learning progression. Based on students’ data, we combined the contents of level 4 and 5, and deleted the descriptions about the thoughts of transformations. We could finally depict 63.04% students in our data after the adjustment. And, we put the descriptions about the thoughts of transformations back into the learning progression by teachers’ data. Since we had no idea to use the teachers’ data, we mainly relied on students’ data supplemented by teachers’ data to adjust our learning progression.

    Keywords: learning progression, quadratic function

    目 錄 第壹章 緒論 1 第一節、 研究動機 1 第二節、 研究目的與研究問題 4 第三節、 名詞界定 5 (一) 學習進程 5 (二) 二次函數學習內容 5 (三) 課程綱要 5 第四節、 研究範圍與限制 6 (一) 研究範圍 6 (二) 研究限制 6 第貳章 文獻探討 7 第一節、 學習進程理論 7 (一) 學習進程之意涵與特徵 7 (二) 學習進程之研究方法 9 第二節、 學習進程與學習軌跡之比較 12 (一) 學習軌跡之意涵 12 (二) 學習軌跡與學習進程之異同 13 第參章 研究方法 15 第一節、 研究設計與架構 15 第二節、 研究流程 18 第肆章 探索期之研究 20 第一節、 研究流程 20 第二節、 研究對象與分析的文件 22 (一) 文獻分析階段 22 (二) 質性訪談階段 22 (三) 資料蒐集階段 23 第三節、 研究工具 24 (一) 訪談工具的設計 24 (二) 評量試卷之編製與設計 25 第四節、 研究結果與討論 28 (一) 文獻分析結果 28 (二) 質性訪談結果 32 (三) 初步的學習進程 34 (四) 研究結果的討論 37 第伍章 調整期之研究 39 第一節、 研究流程 39 第二節、 研究對象 40 第三節、 研究結果 41 (一) 文獻分析結果 41 (二) 調整後的學習進程 46 第陸章 驗證期之研究 54 第一節、 研究流程 54 第二節、 研究對象 56 (一) 學生資料 56 (二) 教師資料 58 第三節、 研究工具 60 (一) 評量試卷之編製與設計 60 (二) 教師資料訪談工具的設計 70 第四節、 學生資料的處理與分析 72 (一) 學生資料的處理 72 (二) 量化資料的分析結果 74 (三) 學生能力等級的分析結果 76 第五節、 教師資料的處理與分析 78 (一) 教師資料的處理 78 (二) 排序前訪談內容的整理與分析 78 (三) 排序活動資料的整理與分析 79 (四) 排序後訪談內容的整理與分析 85 第六節、 研究結果 87 第柒章 討論與建議 91 第一節、 討論 91 (一) 教師資料與學生資料的參考程度 91 (二) 二次函數學習進程內容 92 第二節、 建議 94 (一) 對後續研究者探討學生學習進程的建議 94 (二) 對使用本研究所建立之二次函數學習進程的建議 95 參考文獻 97 附錄 101

    一、 中文部分
    林文川(2014)。「學習軌道」在數學教育研究的回顧與展望。新竹教育大學教育學報,33(1),177-205。
    林哲民(2013)。國小學生因數與倍數學習進程之探究。國立臺灣師範大學科學教育研究所碩士論文。未出版。
    南一書局(2014)。國民中學數學第六冊。台南市:南一書局企業股份有限公司。
    柯慶安(2013)。二次函數位教學分析與設計之研究。國立臺灣師範大學數學系碩士班碩士論文。未出版。
    徐敏媛(2012)。國中生在二次函數概念上的主要錯誤類型及其補救教學之研究。國立臺灣師範大學數學系教學碩士班碩士論文。未出版。
    教育部(2008)。國民中小學九年一貫課程綱要。台北市:教育部。
    教育部(2009)。普通高級中學課程綱要。台北市:教育部。
    康軒文教(2014)。國中數學課本第六冊(3下)。新北市:康軒文教事業股份有限公司。
    國家教育研究院(2016)。十二年國民基本教育課程綱要數學領域(草案)。台北市:國家教育研究院。
    黃元宏(2015)。建立中學生絕對值與絕對值方程式學習進程之研究。國立臺灣師範大學科學教育研究所碩士論文。未出版。
    劉昆夏(2011)。科學概念學習進程的發展、評量與教學:以氧化還原為例。國立中山大學教育研究所博士論文。未出版。
    鄭家禎(2013)。二階段評量對國中三年級數學學習診斷力之研究-以二次函數為例。國立高雄師範大學數學系教學碩士班碩士論文。未出版。
    翰林出版(2013)。國民中學數學課本第六冊。台南市:翰林出版事業股份有限公司。
    龍騰文化(2012)。普通高級中學數學第一冊。新北市:龍騰文化事業股份有限公司。

    二、 英文部分
    Alonzo, A. C., Neidorf, T., & Anderson, C. W. (2012). Using learning progressions to inform large-scale assessment. In A. C. Alonzo, A. W. Gotwals (Eds.) Learning Progressions in Science (pp. 211-240). Sense Publishers, Rotterdam.
    Alonzo, A., & Steedle, J. T. (2009). Developing and assessing a force and motion learning progression. Science Education, 93, 389-421.
    Battista, M. T. (2011). Conceptualizations and issues related to learning progressions, learning trajectories, and levels of sophisticated. The Mathematics Enthusiast, 8, 507-569
    Clements, D. H., & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical Thinking and Learning, 6(2), 81-89. doi:10.1207/s15327833mt10602_1
    Confrey, J., Maloney, A. P., & Nguyen, K. H. (2014). Learning trajectories in mathematics. In A. P. Maloney, J. Confrey, & K. H. Nguyen (Eds.), Learning over Time: Learning Trajectories in Mathematics Education (pp. xi–xxi). Charlotte, NC: Information Age.
    Daro, P., Mosher, F., & Corcoran, T. (2011). Learning Trajectories in Mathematics: A Foundation for Standards, Curriculum, Assessment, and Instruction (Research Report No. RR-68). Consortium for Policy Research in Education. Retrieved from http://www.cpre.org/images/stories/cpre_pdfs/learning%20trajectories%20in%20math_ccii%20report.pdf
    Duncan, R. G., & Hmelo-Silver, C. E. (2009). Learning progressions: Aligning curriculum, instruction, and assessment. Journal of Research in Science Teaching, 46(6), 606–609. doi:10.1002/tea.20316
    Ellis, A. B., & Grinstead, P. (2008). Hidden lessons: How a focus on slope-like properties of quadratic functions encouraged unexpected generalizations. The Journal of Mathematical Behavior, 27(4), 277-296.
    Empson, S. B. (2011). On the idea of learning trajectories: Promises and pitfalls. The Mathematics Enthusiast, 8(3), 571-596.
    Eraslan, A. (2005). A Qualitative Study: Algebra Honor Students' Cognitive Obstacles as They Explore Concepts of Quadratic Functions (Doctoral dissertation, Florida State University).
    Gotwals, A. W., & Alonzo, A. C. (2012). Introduction: Leaping into learning progressions in science. In A. C. Alonzo, A. W. Gotwals (Eds.) Learning Progressions in Science (pp. 3-12). Sense Publishers, Rotterdam
    Gotwals, A. W., & Songer, N. B. (2010). Reasoning up and down a food chain: Using an assessment framework to investigate students' middle knowledge. Science Education, 94(2), 259-281.
    Gunckel, K. L., Mohan, L., Covitt, B. A., & Anderson, C. W. (2012). Addressing challenges in developing learning progressions for environmental science literacy. In A. C. Alonzo, A. W. Gotwals (Eds.) Learning Progressions in Science (pp. 39-75). Sense Publishers, Rotterdam.
    Ibeawuchi, E. O. (2010). The Role of the Pedagogical Content Knowledge in the Learning of Quadratic Functions (Doctoral dissertation).
    Kerslake, D. (1981). Graphs. Children's Understanding of Mathematics, 11, 16.
    Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, and teaching. Review of Educational Research, 60(1), 1-64.
    Lobato, J., & Walters, C.D., (2017) A taxonomy of approaches to learning trajectories and progressions. In Cai, J. (ed.) The Compendium for Research in Mathematics Education (pp. 74- 101). National Council of Teachers of Mathematics (NCTM)
    Mohan, L., Chen, J., & Anderson, C. W. (2009). Developing a multi‐year learning progression for carbon cycling in socio‐ecological systems. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 46(6), 675-698.
    Mohan, L., & Plummer, J. (2012). Exploring challenges to defining learning progressions. In Learning progressions in science (pp. 139-147). SensePublishers, Rotterdam.
    National Concil of Teachers of Mathematics (2009). Focus in high school mathematics: Reasoning and sense making.
    National Research Council. (2007). Taking science to school: Learning and teaching science in grades K–8. In R. A. Duschl, H. A. Schweingruber, & A. W. Shouse (Eds.) Committee on Science Learning, Kindergarten Through Eighth Grade. Washington DC: The National Academies Press.
    Parent, J. S. S. (2015). Students' Understanding of Quadratic Functions: Learning from Students' Voices.
    Plummer, J. D., & Krajcik, J. (2010). Building a learning progression for celestial motion: Elementary levels from an earth-based perspective. Journal of Research in Science Teaching, 47,768-787.
    Shavelson, R. J., & Kurpius, A. (2012). Reflections on learning progressions. In A. C. Alonzo, A. W. Gotwals (Eds.) Learning Progressions in Science (pp. 3-12). Sense Publishers, Rotterdam
    Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114–145. doi:10.2307/749205
    Smith, C. L., Wiser, M., Anderson, C. W., & Krajcik, J. (2006). FOCUS ARTICLE: implications of research on children's learning for standards and assessment: a proposed learning progression for matter and the atomic-molecular theory. Measurement: Interdisciplinary Research & Perspective, 4(1-2), 1-98.
    Steffe, L. P. (2004). On the construction of learning trajectories of children: The case of commensurate fractions. Mathematical Thinking and Learning, 6(2), 129-162.
    Stevens, S. Y., Delgado, C., & Krajcik, J. S. (2010). Developing a hypothetical multi‐dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47(6), 687-715.
    Stevens, S., Shin, N., Delgado, C., Krajcik, J., & Pellegrino, J. (2002). Using learning progressions to inform curriculum, instruction and assessment design.
    Stevens, S. Y., Shin, N., & Krajcik, J. S. (2009, June). Towards a model for the development of an empirically tested learning progression. In Learning Progressions in Science (LeaPS) Conference, Iowa City, IA.
    Wilson, M. (2009). Measuring progressions: Assessment structures underlying a learning progression. Journal of Research in Science Teaching, 46, 716-730.
    Zaslavsky, O. (1997). Conceptual Obstacles in the Learning of Quadratic Functions. Focus on Learning Problems in Mathematics, 19(1), 20-44.

    下載圖示
    QR CODE