簡易檢索 / 詳目顯示

研究生: 蔡一銘
論文名稱: 超導材料 Fe(Se,Te) 系統之拉曼散射光譜研究
Raman-scattering studies of superconducting Fe(Se,Te) systems
指導教授: 劉祥麟
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 100
中文關鍵詞: Fe(Se,Te)超導拉曼散射光譜
英文關鍵詞: Fe(Se,Te), superconducting, Raman-scattering
論文種類: 學術論文
相關次數: 點閱:232下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

我們研究摻雜不同碲離子濃度 FeSexTe1-x ( x = 1.0 、 0.7 、 0.5 、0.3 、 0.0 ) 與 RFeSexTe1-x ( R = Cu 、 Co 、 Ni ) 單晶樣品之拉曼散射光譜。首先, FeSexTe1-x 具有四個拉曼活性振動模,其頻率位置分別在 122 cm-1(Eg(1) 對稱性)、 178.9 cm-1(A1g 對稱性)、 194.3 cm-1(B1g 對稱性) 及 253 cm-1(Eg(2) 對稱性) ,隨著摻雜碲離子濃度增加,這些拉曼峰展現紅移變化,符合簡易彈力公式的預測。 FeSe 低溫拉曼散射光譜顯示:(i)隨著溫度下降, B1g 振動模藍移量約為 A1g 振動模的三倍,此現象與兩種振動模的剛性特質不同有關; (ii)結構相轉變的 γ 鍵角變化並未影響拉曼峰參數值。有趣地是,在磁性及結構相轉變溫度下,FeTe A1g 與 B1g 拉曼峰發生紅移現象,推測與自旋-聲子交互作用有關; FeSe0.5Te0.5 室溫拉曼散射光譜,顯示額外三個拉曼峰,可能是紅外光活性振動模 (Eu 對稱性) 與多聲子振動模,當在超導相變溫度之下, FeSe0.5Te0.5 A1g 與 B1g 拉曼峰藍移,其與 YBa2Cu3O7-δ 的自洽能效應不相符合。
最後,RFeSexTe1-x ( R = Cu 、 Co 、 Ni ) 拉曼散射光譜顯示 B1g 振動模的偏移量比 A1g 振動模大,應該與鐵離子部分被取代有關。

We report a Raman-scattering study of Fe(Se,Te) single crystals at temperatures between 10 and 330 K. Room-temperature Raman-scattering spectrum of FeSe exhibits four phonon modes at about 122(Eg(1)), 178.9(A1g), 194.3 (B1g) and 253 cm-1(Eg(2)). When doped with Te on Se, the frequency positions of these phonon peaks redshift, in consistent with the prediction of simple spring constant model. With decreasing temperature, for FeSe, the amount of blue shift in B1g mode is three times larger than that in A1g, which is likely associated with the difference of rigidity of these two modes. Moreover, these two phonons are insensitive with the tetragonal to triclinic phase transition. Interestingly, anomalies of phonon parameters for FeTe are observed near the structural and magnetic phase transition temperatures, suggesting a spin-phonon coupling. FeSe0.5Te0.5 shows additional three phonon modes, which can be related with symmetry-breaking infrared mode (Eu) and multiphonons. The superconducting phase transition in this compound manifests itself as a blue shift in A1g and B1g phonon modes, betraying the self-energy effect (red shift) observed in YBa2Cu3O7-δ. Finally, Cu, Co, and Ni doping have a strong effect in the energy of B1g phonon mode.

致謝 ………………………………………………………………i 中文摘要 …………………………………………………………ii 英文摘要 …………………………………………………………iii 目錄 ………………………………………………………………iv 表目錄 ……………………………………………………………vi 圖目錄 ……………………………………………………………x 第一章 緒論 ………………………………………………………1 第二章 研究背景 ………………………………………………6 第三章 實驗儀器設備及其基本原理 …………………………21 3-1光譜儀系統 ……………………………………………21 3-2拉曼散射原理介紹 ……………………………………23 第四章 實驗樣品特性 …………………………………………31 4-1 樣品製程 ………………………………………………31 4-2 樣品物性 ………………………………………………31 第五章 實驗結果與討論 …………………………………………43 5-1摻雜 Se 離子之拉曼散射光譜研究 …………………43 5-2摻雜 Te 離子之 FeSe 拉曼散射光譜研究 …………47 5-3摻雜銅、鈷、鎳離子之 FeSeyTe1-y 拉曼散射光譜研究…55 第六章 結論與未來展望 …………………………………………93 參考文獻 …………………………………………………………96

[1] http://www.superpower-inc.com/?q=node/13
[2] http://www.rtri.or.jp/rd/maglev/html/english/maglev_frame_E.html
[3] U. S. Air Force Wright Laboratory.
[4] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, “Iron-based layered superconductor: LaOFeP”, J. Am. Chem. Soc. 128, 10012 (2006).
[5] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-based layered superconductor La[O1-xFx]FeAs ( x = 0.05-0.12 ) with Tc = 26 K”, J. Am. Chem. Soc. 130, 3296 (2008).
[6] Kuo-Wei Yeh, Tzu-Wen Huang, Yi-Lin Huang, Ta-Kun Chen, Fong-Chi Hsu, Phillip M. Wu, Yong-Chi Lee, Yan-Yi Chu, Chi-Lian Chen, Jiu-Yong Luo, Der-Chung Yan, and Maw-Kuen Wu, “Tellurium substitution effect on superconductivity of the α-phase iron selenide”, EPL 84, 37002 (2008).
[7] M. K. Wu, F. C. Hsu, K. W. Yeh, T. W. Huang, J. Y. Luo, M. J. Wang, H. H. Chang, T. K. Chen, S. M. Rao, B. H. Mok, C. L. Chen, Y. L. Huang, C. T. Ke, P. M. Wu, A. M. Chang, C. T. Wu, T. P. Perng, “The development of the superconducting PbO-type b-FeSe and related compounds”, Physica C 469, 340 (2009).
[8] S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, “Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe ( Tc =37 K )”, Phys. Rev. B 80, 064506 (2009).
[9] H. K. Onnes, “Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures, etc. IV. The resistance of pure mercury at helium temperatures”, Commun. Phys. Lab. Univ. Leiden 11, 17 (1911).
[10] W. Meissner and R. Ochsenfeld, “Ein neuer Effekt bei Eintritt der Supraleitfähigkeit”, Naturwiss 21 , 787 (1933).
[11] J. G. Bednoz and K. A. Müller, “Possible high Tc superconductivity in the Ba - L a - C u - O System”, Zeitschrift für physik B-Condensed Matter 64, 189 (1986).
[12] M. K. Wu, J. R. Ashburn, and C. J. Torng, “Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure”, Phys. Rev. Lett. 58, 908 (1987).
[13] A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, “Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O System”, Nature 363, 56 (1993).
[14] L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, and C. W. Chu, “Superconductivity up to 164 K in HgBa2Cam-1CumO2m+2+ξ ( m = 1 、 2 、 and 3 ) under guasihydrostatic pressures”, Phys. Rev. B 50, 4260 (1994).
[15] B. I. Zimmer, W. Jeitschko, J. H. Albering, R. Glaum, and M. Reehuis, “The rare earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO with ZrCuSiAs type structure”, J. Alloys Comp. 229, 238 (1995).
[16] P. Quebe, L. J. Terbüchte, and W. Jeitschko, “Quaternary rare earth transition metal arsenide oxides RTAsO ( T = Fe, Ru, Co ) with ZrCuSiAs type structure”, J. Alloys Comp. 302, 70 (2000).
[17] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride”, Nature 410, 63 (2001).
[18] H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono, “Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs”, Nature 453, 376 (2008).
[19] H. H. Wen, G. Mu, L. Fang, H. Yang, and X. Zhu, “Superconductivity at 25 K in hole-doped (La1-xSrx)OFeAs”, Europhys. Lett. 82, 17009 (2008).
[20] X. H. Chen, T. Wu, G. Wu, R. H. Liu, H. Chen, and D. F. Fang, “Superconductivity at 43 K in SmFeAsO1-xFx”, Nature 453, 761 (2008).
[21] Z. A. Ren, W. Lu, J. Yang, W. Yi, X. L. Shen, Z. C. Li, G. C. Che, X. L. Dong, L. L. Sun, F. Zhou, and Z. X. Zhao, “Superconductivity at 55 K in iron-based f-doped layered quaternary compound Sm[O1-xFx] FeAs ”, Chin. Phys. Lett. 25, 2215 (2008).
[22] G. Cao, C. Wang, Z. Zhu, S. Jiang, Y. Luo, S. Chi, Z. Ren, Q. Tao, Y. Wang, and Z. Xu, “Superconductivity induced by cobalt doping in iron-based oxyarsenides”, arXiv: 0807.1304 (2008).
[23] C. Wang, L. Li, S. Chi, Z. Zhu, Z. Ren, Y. Li, Y. Wang, X. Lin, Y. Luo, S. Jiang, X. Xu, G. Cao, and Z. Xu, “Thorium-doping–induced superconductivity up to 56 K in Gd1−xThxFeAsO” , Europhys. Lett. 83, 67006 (2008).
[24] T. A. Ren, G. C. Che, X. L. Dong, J. Yang, W. Lu, W. Yi, X. L. Shen, Z. C. Li, L. L. Sun, F. Zhou, and Z. X. Zhao, “Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1−δ ( Re = rare-earth metal ) without fluorine doping”, Europhys. Lett. 83, 17002 (2008).
[25] M. Rotter, M. Tegel, and D. Johrend, “Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2”, Angew. Chem. Int. Ed. 47, 7949 (2008).
[26] J. H. Tapp, Z. Tang, B. Lv, K. Sasmal, B. Lorenz, P. C. W. Chu, and A. M. Guloy, “LiFeAs: an intrinsic FeAs-based superconductor with Tc =18 K”, Phys. Rev. B 78, 060505 (2008).
[27] J. Paglione and R. L. Greene, “High-temperature superconductivity in iron-based materials”, Nature Physics 6, 645 (2010).
[28] 吳茂昆。「超導物理新發展-鐵基超導體的興起」。物理雙月刊 31 卷 6 期:( 2009 年 12 月 ) 頁 621-628。
[29] T. Imai, K. Ahilan, F. L. Ning, T. M. McQueen, and R. J. Cava, “Why does undoped FeSe become a high-Tc superconductor under pressure? ”, Phys. Rev. Lett. 102, 177005 (2009).
[30] M. K. Wu, K. W. Yeh, H. C. Hsu, T. W. Huang, T. K. Chen, J. Y. Luo, M. J. Wang, H. H. Chang, C. T. Ke, M. H. Moh, and S. M. D. Rao, “The development of the superconducting tetragonal PbO-type FeSe and related compounds”, Phys. Status Solidi B 247, 500 (2010).
[31] T.-L Xia, D. Hou, S. C. Zhao, A. M. Zhang, G. F. Chen, J. L. Luo, N. L. Wang, J. H. Wei, Z.-Y. Lu, and Q. M. Zhang, “Raman phonons of α-FeTe and Fe1.03Se0.3Te0.7 single crystals”, Phys. Rev. B 79, 1405510 (2009).
[32] P. Kumar, A. Kumar, S. Saha, D. V. S. Muthu, J. Patnaik, U. V. Waghmare, A. K. Ganguli, and A. K. Sood, “Anomalous Raman scattering from phonons and electrons of superconducting FeSe0.82”, Solid State Comm. 150, 557 (2010).
[33] Z. Qin, C. O’Malley, K. Lo, T. Zhou, and S.-W. Cheong, “Crystal field excitations in the Raman spectra of FeSe1-x”, Solid State Comm. 150, 768 (2010).
[34] K. Okazaki, S. Sugai, S. Niitaka, and H. Takagi, “Phonon, two-magnon and electronic Raman scattering of Fe1+yTe1−xSex”, Phys. Rev. B 83, 035103 (2010).
[35] C. C. Homes, A. Akrap, J. S. Wen, Z. J. Xu, Z. W. Lin, Q. Li, and G. D. Gu, “Electronic correlations and unusual superconducting response in the optical properties of the iron chalcogenide FeTe0.55Se0.45”, Phys. Rev. B 81, 180508 (2010).
[36] 鄧勃、 宁永成、 劉密新著,儀器分析,清華大學出版社出版,中華民國八十年五月第一版。
[37] K. W. Yeh, C. T. Ke, T. W. Huang, Y. L. Huang, P. M. Wu, and M. K. Wu, “Superconducting FeSe1-xTex single crystal grown by optical zone-melting technique”, Crystal Growth & Design 9, 4847 (2009).
[38] F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, “Superconductivity in the PbO-type structure α-FeSe”, PNAS 105, 14262 (2008).
[39] G. Fateley Willinan and R. Francis, “Infrared and Raman selection rules for molecular and lattice:The correlation method ”, (1972).
[40] S. M. Rao, B. H. Mok, M. C. Ling, C. T. Ke, T. C. Chen, I-M Tsai, H. L. Liu, C. L. Chen, F. C. Hsu, T. W. Huang, T. B. Wu, and M. K. Wu, “Convective solution transport - a new technique for the growth of big crystals of the superconducting -FeSe using KCl solutions”, ( unpublished ).
[41] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields”, Nature 429, 392 (2004).
[42] M. N. Iliev, H. Guo and A. Gupta, “Raman spectroscopy evidence of strong spin-phonon coupling in epitaxial thin films of the double perovskite La2NiMnO6”, Appl. Phys. Lett. 90, 151914 (2007).
[43] J. Laverdière, S. Jandl, A. A. Mukhin, V. Yu. Ivanov, V. G. Ivanov, and M. N. Iliev, “Spin-phonon coupling in orthorhombic RMnO3 ( R=Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Y ) : A Raman study”, Phys. Rev. B 73, 214301 (2006).
[44] G. Audi, A. H. Wapstra, C. Thibault, J. Blachot, and O. Bersillon, “The Ame2003 atomic mass evaluation”, Nuclear Physics A 729, 337 (2003).
[45] M. Chen and D. B. Tanner, “Infrared study of the phonon modes in bismuth pyrochlores”, Phys. Rev. B 72, 054303 (2005).
[46] 翁士民,國立臺灣師範大學物理研究所碩士論文, 93 年 6 月。
[47] R. Zeyher and G. Zwicknagl, “Superconductivity-induced phonon self-energy effects in high-Tc superconductors”, Z. Phys. B - Condensed Matter 78, 175 (1990).
[48] T. Kato, Y. Mizuguchi, H. Nakamura, T. Machida, H. Sakata, and Y. Takano, “Local density of states and superconducting gap in the iron chalcogenide superconductor Fe1+δSe1−xTex observed by scanning tunneling spectroscopy”, Phys. Rev. B 80, 180507 (2009).
[49] C. T. Wu, H. H. Chang, J. Y. Luo, T. J. Chen, F. C. Hsu, T. K. Chen, M. J. Wang, and M. K. Wu, “Heterojunction of Fe(Se1−xTex) superconductor on Nb-doped SrTiO3”, Appl. Phys. Lett. 96, 122506 (2010).
[50] H. Martinho, C. Rettori, P. G. Pagliuso, A. A. Martin, N. O. Moreno, and J. L. Sarrao, “Role of the E2g phonon in the superconductivity of MgB2 : a Raman scattering study”, Solid State Communications 125, 499 (2003).
[51] A. Mialitsin, B. S. Dennis, J. Karpinski, and G. Blumberg, “Anharmonicity and self-energy effect of the E2g phonon in MgB2”, Phys. Rev. B 75, 020509 (2007).

下載圖示
QR CODE