簡易檢索 / 詳目顯示

研究生: 辛承宣
Hsin, Cheng-Hsuan
論文名稱: 葛蘭傑因果分析應用於迴轉機械異常預診與根本原因診斷之研究
Prognosis and Root Cause Diagnosis in Rotary Machine Based on Granger causality
指導教授: 吳順德
Wu, Shuen-De
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 67
中文關鍵詞: 迴轉機械異常偵測錯誤定位根本原因診斷葛蘭傑因果分析時頻域因果性分析
英文關鍵詞: rotary machine, anomaly detection, fault localization, root cause diagnosis, granger causality, time-frequency causality analysis
DOI URL: http://doi.org/10.6345/THE.NTNU.DME.002.2019.E08
論文種類: 學術論文
相關次數: 點閱:96下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在工具機組成中,迴轉機械扮演了非常重要的角色,包括軸承、齒輪與轉軸等等零件,而這些零組件往往承受極高的負載,隨著系統運轉會漸漸出現缺陷,進而導致整個系統故障停機,此時就必須付出高昂的硬體及人力成本進行維修,影響加工品質及預訂的出貨時程,造成生產者極大的困擾,所以開發一套故障診斷系統來即時監測並進一步量化損壞情形就是極為重要的課題。
    在此之前,迴轉機械系統中的故障診斷技術大都聚焦於錯誤診斷與預知保養上,本研究希望利用葛蘭傑因果分析做為異常偵測之演算法,分析迴轉機械之振動訊號並找出異常的源頭,達到「錯誤定位」與「根本原因診斷」的功效,同時也期待透過因果性分析多個零件間的交互關係,找出異常發生的前兆,達到預知保養的功效。
    本研究將以資料驅動(data-driven)的方式來設計異常診斷系統之架構,可分為以下三部分:1.訊號擷取;2.特徵抽取;3.利用機器學習演算法進行異常偵測及判斷。在訊號擷取的部分,初期將會先利用IMS中心提供之軸承資料庫進行初步測試,並在之後架設一多軸承實驗平台,量測更多的實驗資料來加以佐證。在特徵抽取演算法的部分,本研究將會設計一系列實驗來驗證葛蘭傑因果分析是否能夠找到判斷根本原因的有效特徵,並從時域、頻域及時頻域等角度呈現其分析結果,確定其做為根本原因診斷的可行性後,期待未來能進一步利用支援向量描述等機器學習演算法進行訓練,達到自動化偵測及判定的功效。

    Rotary machines composed of bearings, gears and shafts play an important role in the machine tools. These components are often subjected to high loading during operations. Defects are then initiated, propagated, developed and finally cause machine breakdown. The quality and the estimated delivery time will then be affected, causing higher expense in maintenance and labor cost. Therefore, developing a diagnostic system capable of detecting anomaly instantly is important for both academic and industry field.
    In previous studies, anomaly detection in rotary machines usually focuses on "fault diagnosis" and "prognosis". In this study, we suggest a new method to identify the "fault location" and "root cause" by applying Spectral Granger Causality to detect the anomaly of a multi-bearing system. By using this method, we may find out some prognostic feature before faults occur through the cause-effect relationship analysis.
    The design of system is based on data-driven structure, including:Data Acquisition, Feature Extraction and Machine Learning. In data acquisition, the bearing data provided by the Center of Intelligent Maintenance Systems (IMS) and self-constructed multi-bearing platform is used to verify the proposed algorithm. In feature extraction, we design a series of experiments to test whether Granger Causality in time, frequency or time-frequency domain can be taken as the feature of fault localization. The third part: Machine learning is not conducted in this study. In the future, machine learning algorithms such as Support Vector Data Description can use the feature extracted by granger causality to detect the fault location intelligently.

    摘要 i Abstract ii 誌謝 iv 目錄 vi 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目標 2 1.3 系統架構與論文章節概述 2 1.4 文獻探討 4 1.4.1 機械故障診斷的文獻整理與回顧 4 1.4.2 重要的因果性分析演算法 6 第二章 訊號擷取與實驗資料之收集 9 2.1 IMS軸承資料集 9 2.2 自行設計之多軸承實驗平台 10 2.2.1 多軸承實驗平台各項參數設計 10 2.2.2 多軸承實驗平台之運轉模型 12 2.2.3 軸承的對心與校正 14 第三章 根本原因診斷的理論背景 16 3.1 時域葛蘭傑因果分析 17 3.2 頻域葛蘭傑因果分析 18 第四章 實驗設計與結果討論 21 4.1 軸承損壞疲勞測試—使用IMS軸承資料集 21 4.1.1 實驗流程 21 4.1.2 實驗結果與討論 22 4.2 軸承異常來源模擬測試 27 4.2.1 實驗流程 27 4.2.2 實驗結果與討論 29 4.3 軸承損壞疲勞測試—使用自行架設之多軸承實驗平台 51 4.3.1 實驗流程 51 4.3.2 實驗結果與討論 52 第五章 結論 58 5.1 結論 58 5.2 本研究之貢獻 59 5.3 可改進之方向與未來展望 59 5.2.1 元件損壞程度難以量化 59 5.2.2 因果性增強與元件異常的充分必要關係 60 5.2.3 在更多實際的機台上進行驗證 60 5.2.4 結合機器學習演算法進行自動化判定 60 5.2.5 使用不同的因果性分析模型做為特徵抽取演算法 61 附錄 軸承對心對因果性分析的影響 62 參考文獻 64

    [1] J. Lee, H. Qiu, G. Yu, and J. Lin, “Rexnord Technical Services, Bearing Data Set, IMS, University of Cincinnati. NASA Ames Prognostics Data Repository,” NASA Ames, Moffett Field, CA, 2007.
    [2] http://data-acoustics.com/measurements/bearing-faults/bearing-4/
    [3] X. R. Zhu, Y. Y. Zhang, and Y. S. Zhu, “Bearing performance degradation assessment based on the rough support vector data description,” Mechanical Systems and Signal Processing, vol. 34, pp. 203-217, Jan 2013.
    [4] Y. Zhang, H. F. Zuo, and F. Bai, “Classification of fault location and performance degradation of a roller bearing,” Measurement, vol. 46, pp. 1178-1189, Apr 2013.
    [5] M. D. Prieto, G. Cirrincione, A. G. Espinosa, J. A. Ortega, and H. Henao, “Bearing Fault Detection by a Novel Condition-Monitoring Scheme Based on Statistical-Time Features and Neural Networks,” IEEE Transactions on Industrial Electronics, vol. 60, pp. 3398-3407, Aug 2013.
    [6] L. Mi, W. Tan, and R. Chen, “Multi-steps degradation process prediction for bearing based on improved back propagation neural network,” Proceedings of the Institution of Mechanical Engineers, Part C Journal of Mechanical Engineering Science, vol. 227, pp. 1544-1553, Jul 2013.
    [7] S. J. Dong and T. H. Luo, “Bearing degradation process prediction based on the PCA and optimized LS-SVM model,” Measurement, vol. 46, pp. 3143-3152, Nov 2013.
    [8] J. B. Yu, “Local and Nonlocal Preserving Projection for Bearing Defect Classification and Performance Assessment,” IEEE Transactions on Industrial Electronics, vol. 59, pp. 2363-2376, May 2012.
    [9] Y. J. Wang, S. Q. Kang, Y. C. Jiang, G. X. Yang, L. X. Song, and V. I. Mikulovich, “Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine,” Mechanical Systems and Signal Processing, vol. 29, pp. 404-414, May 2012.
    [10] R. L. Jiang, J. Chen, G. M. Dong, T. Liu, and W. B. Xiao, “The weak fault diagnosis and condition monitoring of rolling element bearing using minimum entropy deconvolution and envelop spectrum,” Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, vol. 227, pp. 1116-1129, 2013.
    [11] J. Q. Hu, L. B. Zhang, and W. Liang, “Dynamic degradation observer for bearing fault by MTS-SOM system,” Mechanical Systems and Signal Processing, vol. 36, pp. 385-400, Apr 2013.
    [12] Y. Pan and J. Chen, “The Changes of Complexity in the performance degradation process of rolling element bearing,” Journal of Vibratrion and Control, 2014, (DOI) 1077546314532671.
    [13] 1. C. W. Wu, Y.Y. Ting, J. Wu, S. D.Wu, “Complexity-loss in Bearing Vibration Signal during Performance Degradation,” 2014, International Conference on Engineering and Applied Science(ICEAS), Sapporo, Japan, July, 2014.
    [14] Chiu-Wen Wu, Chun-Hsiang Chang, Chun-Chieh Wang, and Shuen-De Wu*, “Bearing Anomaly Detection Based on Permutation Entropy and Support Vector Data Description,” The 13th International Conference on Automation Technology, Taipei, Nov., 2015.
    [15] D. Fernandez-Francos, D. Martinez-Rego, O. Fontenla-Romero, and A. Alonso-Betanzos, “Automatic bearing fault diagnosis based on one-class v-SVM,” Computers & Industrial Engineering, vol. 64, pp. 357-365, Jan 2013.
    [16] F. Y. Cong, J. Chen, and G. M. Dong, “Spectral kurtosis based on AR model for fault diagnosis and condition monitoring of rolling bearing,” Journal of Mechanical Science and Technology, vol. 26, pp.301-306, Feb 2012.
    [17] J. Jiang and B. Zhang, “Rolling element bearing vibration modeling with applications to health monitoring,” Journal of Vibration and Control, vol. 18, pp. 1768-1776, Oct 2012.
    [18] E. Ebrahimi, “Fault diagnosis of Spur gear using vibration analysis,” Journal of American Science, 8(1):133-138, 2012.
    [19] Y. Shu and J. Zhao, “Data-driven causal inference based on a modified transfer entropy. Computers & Chemical Engineering,” vol. 57, pp. 173-180, 2014
    [20] C. Kühnert, “Data-driven Methods for Fault Localization in Process Technology,” KIT Scientific Publishing, vol. 15, 2013
    [21] P. Duan, F. Yang, T., Chen, and S. L. Shah, “Direct causality detection via the transfer entropy approach,” IEEE Transactions on Control Systems Technology , vol. 21, no. 6, pp. 2052-2066, 2013
    [22] M. Bauer, J. W. Cox, M. H. Caveness, J. J. Downs, and N. F. Thornhill, “Finding the direction of disturbance propagation in a chemical process using transfer entropy,” IEEE Transactions on Control Systems Technology, vol. 15, no. 1, pp. 12-21, 2007
    [23] T. Yuan, and S. J. Qin, “Root cause diagnosis of plant-wide oscillations using Granger causality,” Journal of Process Control, vol. 24, no. 2, pp. 450-459, 2014.
    [24] C. W. J. Granger, “Investigating Causal Relations by Econometric Models and Cross-spectral Methods,” Econometrica, vol. 37, no. 3, pp. 424–438, 1969.
    [25] J. Geweke, 1982, “Measurement of linear dependence and feedback between multiple time series,” J. Am. Stat. Assoc., vol. 77, pp. 304–313, 1982.
    [26] M. Dhamala, G. Rangarajan, and M. Ding, “Estimating Granger causality from Fourier and wavelet transforms of time series data,” Physical Review Letters, vol. 100, no. 1, 018701, 2008.
    [27] Y. Chen, G. Rangarajan, J. Feng, and M. Ding, “Analyzing multiple nonlinear time series with extended Granger causality,” Physics Letters A, vol. 324, no. 1, pp. 26-35, 2004.
    [28] D. Marinazzo, M. Pellicoro, and S. Stramaglia, “Kernel method for nonlinear Granger causality,” Physical Review Letters, vol. 100, no. 14, 144103, 2008
    [29] F. He, H. L. Wei, S. A. Billings, and P. G. Sarrigiannis, “A nonlinear generalization of spectral granger causality,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 6, pp. 1693-1701, 2014.
    [30] L. Barnett and A. K. Seth(2014), “The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference,” Journal of Neuroscience Methods, vol. 223, pp. 50-68, 2014
    [31] L. Schiatti, G. Nollo, G. Rossato, and L. Faes, “Extended Granger causality: a new tool to identify the structure of physiological networks,” Physiological Measurement, vol. 36, no. 4, 827, 2015.
    [32] T. Schreiber, “Measuring information transfer,” Physical Review Letters, vol. 85, no. 2, 461, 2000.
    [33] M. Lungarella, A. Pitti, and Y. Kuniyoshi, “Information transfer at multiple scales,” Physical Review E, vol. 76, no. 5, 056117, 2007.
    [34] M. Staniek, and K. Lehnertz, “Symbolic transfer entropy,” Physical Review Letters, vol. 100, no. 15, 158101, 2008
    [35] L. Barnett, A. B. Barrett, and A. K. Seth, “Granger causality and transfer entropy are equivalent for Gaussian variables,” Physical Review Letters, vol. 103, no. 23, 238701, 2009.
    [36] G. Sugihara, R. May, H. Ye, C. H. Hsieh, E. Deyle, M. Fogarty, and D. Munch, “Detecting causality in complex ecosystems,” Science, vol. 338, no. 6106, pp. 496-500, 2012
    [37] H. Ma, K. Aihara, and L. Chen, “Detecting Causality from Nonlinear Dynamics with Short-term Time Series,” Scientific reports, vol. 4, 7464, 2014

    下載圖示
    QR CODE