簡易檢索 / 詳目顯示

研究生: 柯智瀚
Chih-Han Ko
論文名稱: 32x32 絕緣層上矽晶陣列式波導光柵應用之研究
Study of 32x32 Arrayed Waveguide Grating Based on SOI
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 122
中文關鍵詞: 陣列式波導光柵相位調製器絕緣層上矽晶波長交換開關波長平移漸寬式波導
英文關鍵詞: AWG, Phase Modulator, SOI, Wavelength Switch, Wavelength Shift, Tapered Waveguide
論文種類: 學術論文
相關次數: 點閱:316下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出利用絕緣層上矽晶並結合陣列波導光柵及電光相位調製器組成之32×32陣列式波導光柵波長交換器。在陣列式波導光柵,我們利用陣列波導間之固定光程差產生空間及波長之分波效應並分析其陣列波導在自由傳佈區接面之波導間距對系統插入損失及串音之影響,並分析漸寬式波導在輸入及輸出埠與自由傳佈區接面對系統之影響。本文亦推導出放置於相位陣列波之電光相位調變器對陣列波導光柵之影響,並討論對各相位波導調變藉以讓陣列式波導光柵產生新的功能。
    在32×32陣列式波導光柵波長交換器,我們著重提出一有效的路由自動交換方式藉由結合陣列式波導光柵及電光相位調置器區所組成之陣列波導交換器,我們在相位陣列式波導兩側摻雜如週期排列的硼和磷離子,再利用電壓調變位於相位陣列式波導之電光相位調置器之雜質的濃度變化,利用雜質的變化來改變折射率,藉此從波導中取出特定信號,以達到可控制特定波長信號的路由路徑。接著,我們將此可調式32×32陣列波導光柵交換器應用於高密度分波多工的傳輸網路系統中,如此可達到充分利用有限的波長資源的目的。

    In this thesis, we design a 32×32 Arrayed Waveguide Grating (AWG) wavelength switch which combines arrayed waveguide grating and electrooptic phase modulator based on silicon-on-insulator (SOI) wafer. In arrayed waveguide grating, we use the technique of the constant path length difference at adjacent waveguide of waveguide array to realize the spatial and spectrum division, and discuss the waveguide separation influence at the junction of free propagation region and arrayed waveguide. We also concern the insertion loss and crosstalk affected by tapered waveguide at the interface between the input/output waveguide and free propagation region. We derive the phase term effect at the waveguide array of the arrayed waveguide grating, and with different modulation method to let arrayed waveguide grating get a new function.
    In 32×32 AWG wavelength switch, we focus on the new technology of router. The 32×32 AWG wavelength switch which combines AWG structure and electrooptic phase modulation structure. The boron and phosphorus ions are assumed doping on aside of waveguide array and add voltage to change the carrier concentration distribution. By changing carrier concentration distribution, the index can be changed. We can switch the specific wavelength form the output port of waveguide. We apply such a device into a optical network using finite wavelength channel numbers.

    Chinese Abstract..............................................i English Abstract.............................................ii Acknowledgment...............................................iv Contents......................................................v List of Figures ...........................................viii List of Tables.............................................XIII Chapter 1 Introduction........................................1 Chapter 2 Design of 32 × 32 Arrayed Waveguide Grating Based on SOI Substrate.................................................7 2-1 Introduction of the Technique of Arrayed Waveguide Grating.......................................................7 2-2 Introduction of the Technique of SOI Waveguide............9 2-2-1 Single Mode Vertical-Walled Rib Waveguide..............10 2-2-2 Single Mode Trapezoidal Rib Structure Waveguide........12 2-3 Mathematical Formula of Arrayed Waveguide Grating........14 2-3-1 Theoretical Model of Arrayed Waveguide Grating.........15 2-3-2 Definition of the High-Level Physical Parameters of Arrayed Waveguide Grating....................................20 2-4 Simulation and Analysis of 32×32 Channel Arrayed Waveguide Grating......................................................23 2-4-1 Beam Propagation Method................................23 2-4-2 Analysis the Waveguide Separation of Arrayed Waveguide.26 2-4-3 Design and Analysis of Tapered Waveguide at the Junction of Input/Output port and Free Propagation Region.............28 2-5 Summary..................................................30 Chapter 3 Experiment Results of Integratedd Optical 32×32 Arrayed Waveguide Grating based on SOI Substrate.......45 3-1 Introduction of UNIBOND SOI Wafer with “Smart-Cut Process“...........................................................45 3-2 Basic Semiconductor Process..............................47 3-3 Experiment Process and Results of Integrated Optical 32×32 Arrayed Waveguide Grating Based on UNIBOND SOI Wafer.........49 3-4 Summary..................................................51 Chapter 4 Design and Application of Phase Modulator at Waveguide Array of Arrayed Waveguide Grating.................59 4-1 Introduction of the techinque of Phase Modulator.........60 4-1-1 Free Carrier Dispersion Effect.........................61 4-2 Application of Phase Modulator to Waveguide Array at Arrayed Waveguide Grating....................................64 4-3 Simulation and Analysis of the Phase Modulator of 32×32 Arrayed Waveguide Grating....................................72 4-3-1 Design and Analysis of Integrated 32×32 Arrayed Waveguide Grating Wavelength Switch Based on SOI Waveguides..72 4-3-2 Other Application of Phase Modulator in Arrayed Waveguide Grating......................................................81 4-4 Summary..................................................87 Chapter 5 Conclusions.......................................107 References..................................................109 Publication Lists .........................................xxvi

    Reference
    [1] C. A. Brackett, “Dense Wavelength Division Multiplexing Networks”, IEEE J. Sel. Areas Commun. , vol. 8, pp.948-964, 1990.
    [2] B. Verbeek and M. K. Smit, “Phase array based WDM devices,” in Proc. Rur. Conf. In Optical Communication (ECOC’95), Brussels, Belgium, Sept. 17-21, 1995, pp. 195-202.
    [3] C. Dragone, C. A. Edeards, and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” IEEE Photon. Technol. Lett., vol. 3, pp. 896-899, Oct. 1991.
    [4] B. Schauwecker, G. Przyrembel, B. Kuhlow, and C. Radehaus, “Small-Size Silicon-Oxynitride AWG Demultiplexer Operating Around 725nm,” IEEE Photonics Technology Letters, vol. 12, no. 12, pp. 1645-1646, December 2000
    [5] A. Kaneko, “Recent Progress on Arrayed-Waveguide Gratings for WDM Applications,” Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems, 1999 Digest of the LEOS Summer Topical Meetings, Pages:II29 - II30, 26-30 July 1999
    [6] Y. Tachikawa, Y. Inoue, M. Ishii, and T. Nozawa, “Arrayed-Waveguide Grating Multiplexer with Loop-Back Optical Paths and Its Applications,” Journal of Lightwave Technology, vol. 14, no. 6, pp. 977-980, June 1996
    [7] S. Kamei, M. Ishii, T. Kitagawa, M. Itoh and Y. Hibino, “64-channel ultra-low crosstalk arrayed-waveguide grating multi/demultiplexer module using cascade connection technique,” IEEE Electronics Letters, vol. 39, no. 1, pp.81-82, January 2003
    [8] C. G. M. Vreeburg, C. G. P. Herben, X. J. M. Leijtens, M. K. Smit, F. H. Groen, J. J. G. M. van der Tol, and P. Demeester, “A Low-Loss 16-Channel Polarization Dispersion-Compensated PHASAR Demultiplexer,” IEEE Photonics Technology Letters, vol. 10, no. 3, pp. 382-384, March 1998
    [9] H. Ishii, M. Kohtoku, and Y. Yoshikuni, “Semiconductor Arrayed-Waveguide-Grating (AWG) and its Applications,” Journal of Lightwave Technology, vol. 12, no. 8, pp. 1394–1400, 1994.
    [10] Senichi Suzuki, “Arrayed-Waveguide Gratings for Dense-WDM Systems,” Journal of Lightwave Technology, vol. 15, no. 3, pp. 505–518, 1997.
    [11] M. Okawa, K. Maru, K. Ohira, S. Takasugi, H. Nounen, H. Uetsuka, “ Development of 128-channel 100GHz Arrayed Waveguide Grating with Pitch Conversion Waveguide,” Electron. Lett., vol. 27, pp. 1663-1665, 1991.
    [12] S. Kamei, M. Ishii, T. Kitagawa, M. Itoh, and Y. Hibino, “64-channel very low crosstalk arrayed-waveguide grating multi/demultiplexer module using a cascade connection technique,” Journal of Lightwave Technology, vol. 22, Issue: 5, pp.1242 - 1262, May 2004
    [13] Y. H. Min, M. H. Lee, J. J. Ju, S. K. Park, and J. Y. Do, ”Polymeric 16×16 Arrayed-Waveguide Grating Router Using Fluorinated Polyethers Operating Around 1550nm,” IEEE J. Selected. Quantum Electronics, vol. 7 no. 5, Sep. 2001.
    [14] E. K. Lin, G. Z. Li, Y. Gao, C. S. Guo, “Zero-gap directional coupler switch integration into a silicon-insulator for 1.3mm operation,” Optical Letters, vol. 21, pp.1664–1666, 1996.
    [15] A. Layadi, A. Vonsovical, R. Orobtchouk, D. Pascal, A. Koster, “Low loss optical waveguide on standard SOI/SIMOX substrate,” Optical Communication, vol. 146, pp. 31–33, 1998.
    [16] J. V. Roey, J. V. D. Donk, and D. Lagasse, “Beam propagation: analysis and assessment,” Journal of the Optical Society of America, vol. 71, pp. 803–810, 1981.
    [17] Y. C. Chao. “Optics measurement resolution and BPM errors,” Particle Accelerator Conference, 1997. Proceedings of the 1997, vol. 2, pp. 2125–2127, 1998.
    [18] C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermooptical micro-modulator with 700-kHz –3-dB bandwidth,” IEEE Photonics Technology Letters, vol. 7, no. 4, pp. 363–365, 1995.
    [19] C. K. Tang, G. T. Reed, A. J. Walton, and A. G. Rickman, “Low-loss, single-mode, optical phase modulator in SIMOX material,” Journal of Lightwave Technology, vol. 12, no. 8, pp. 1394–1400, 1994.
    [20] A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro-optic modulator based on a three terminal device integrated in a low-loss single-mode SOI waveguide.” Journal of Lightwave Technology, vol. 15, no. 3, pp. 505–518, 1997.
    [21] P. D. Hewitt and G. T. Reed, “Improving the response of optical phase modulators in SOI by computer simulation,” Journal of Lightwave Technology, vol. 18, no. 3, pp. 443–450, 2000.
    [22] R. A. Soref, and B. R. Bennett, “Electrooptical effects in silicon,” IEEE Journal of Quantum Electronics, vol. QE-23, no. 1, pp. 123–129, 1987.
    [23] A. Vonsovice and A. Koster, “Numerical simulation of a silicon-on-insulator waveguide structure for phase modulation at 1.3mm,” Journal of Lightwave Technology, vol. 17, no. 1, pp. 129–135, 1999.
    [24] M. Bruel, “Silicon on insulator material technology,” IEE Electronics Letter, vol. 31, pp. 1201–1202, 1995.
    [25] OptiWave BPM_CAD, Waveguide Optics Modelling Software System – OptiWave Corporation.
    [26] K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamato, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, M. Matsuoka, “32×32 full-mesh (1024 path) wavelength-routing WDM network based on uniform loss cyclic-frequency arrayed-waveguide grating,” Electron. Lett., Vol. 36, pp. 1294-1296, 2000.
    [27] Y. Hibino, “Passive optical devices for photonic networks,” IEICE Trans. Commun., vol. E-83B, no. 10, Oct. 2000.
    [28] M. Kohtoku, H. Sanjoh, S. Oku, Y. Kadota, Y. Yoshikuni and Y. Shibata “InP-based 64-channel arrayed waveguide grating with 50 GHz channel spacing and up to –20dB crosstalk,” Election. Lett., vol. 33, pp. 1786-1787, 1997.
    [29] H. Takenouchi, H. Tsuda, and T. Kurokawa, “Analysis of optical-signal processing using an arrayed-waveguide grating,” Opt. Express, vol. 6, pp. 124, Mar. 2000.
    [30] M. Smit, ”New focusing and dispersive planar component based on an optical phased array,” Electron. Lett., vol. 24, pp. 385-386, Mar. 1988.
    [31] P.D. Trink et.al, “Silicon-on-insulator (SOI) phased-arrayed wavelength multi-demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Tech. Letter, vol. 9, pp. 940-942, 1997.
    [32] B. Buchold and E. voges, “ Polarization insensitive arrayed-waveguide grating multiplexers with ion-exchanged waveguides in glass,” IEEE J. Select. Topics Quantum Electron, vol. 7, pp. 806-811, 2001.
    [33] Y. Min, M. Lee, J. Ju, S. Ppark, and J. Do, “Polymeric 16×16 arrayed waveguide grating router using fluorinated polyethers operating around 1550nm,” Election. Lett., vol. 32, pp. 1132-1133, June 1996.
    [34] U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1 dB/cm waveguide losses in singlemode SOI rib waveguides,” Phot. Techn. Lett., vol. 8, pp. 647, 1996.
    [35] R. A. Soref, “Kramers-Kroning analysis of E-O switching in silicon,” SPIE Integrated Opt. Circuit Eng., vol. 704, 1986.
    [36] R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. QE-23, pp. 123-129, 1987.
    [37] G. Cocorullo and U. Rendina, “Thermooptical modulation at 1.5μm in silicon etalon,” SPIE Integr. Opt. Circuit Eng., vol. 704, 1986.
    [38] C. K. Tang and G. T. Reed, “Highly efficient optical phase modulator in SOI waveguide,” Electron. Lett., vol. 31, no. 6, pp. 451-452, 1995.
    [39] J. Yamauchi, T. Ando, and H. Nakano, “Beam-propagation analysis of optical fivers by alternating direction implicit method,” Electron. Lett., vol. 27, pp. 1663-1665, 1991.
    [40] R. S. Varga, Matrix Iterative Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1963.
    [41] K. Petermann, “Properties off optical rib-guides with large cross-section,” Archiv fur Elektronik und Uberetragungstechnik, vol. 30, pp. 139-140, 1976.
    [42] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single mode rib waveguides in GeSi-Si and Si-on SiO2” IEEE J. Quantum Electron., vol. 27, pp. 1971-1974, 1991.
    [43] K. Okamoto, K. Syuto, H. Takahashi, and Y. Ohmori, “Fabrication of 128-channel arrayed waveguide grating multiplexer with 25GHz channel spacig,” Election. Lett., vol. 32, pp. 1474-1476, Aug. 1996.
    [44] D. B. Lee, “Anisotropic etching of silicon,” J. Appl. Phys., vol. 40, pp. 4569-4574, 1996.
    [45] C. K. Tang, G. T. Reed, A. J. Walton and A. G. Rickman, “Low-loss and single-mode phase modulator in SIMOX material, “ Journal of Lightwave Technology, vol. 12, pp. 1394-1400, 1994.
    [46] Q. Weiping and F. Dagang, “Modal analysis of a rib waveguide with trapezoidal cross section by variable transformed Galerkin method,” in Int. Conf. Computat. Electromagn. Applicat., pp. 82-85, 1999.
    [47] T. Miyamoto, “Numerical analysis of a rib optical waveguide with trapezoidal cross section,” Opt. Commun., vol. 34, pp. 35-38, 1980.
    [48] P. M. Pelosi, P. Vandenbulcke, C. D. W. Wilkinsion and R. M. De la Rue, “Propagation characteristics of trapezoidal cross-section ridge optical waveguides: An experimental and theoretical investigation.” Appl. Opt., vol. 17, pp. 1187-1193, 1978.
    [49] Takahashi, S. Suzuki and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 array-waveguide grating,” Journal of Lightwave Technology,
    [50] D. F. Clark and I. Dunlop, “Method for analyzing trapezoidal optical waveguides by an equivalent rectangular rib waveguide,” Electron. Lett., vol. 24, pp. 1414-1415, 1998.
    [51] Y. Rui, Y. Jianyi and W. Minghua, “Analysis of rib waveguides with trapezoidal cross section,” Guangxue Xeubao (Acta Optica Sinica), vol. 20, pp. 1494-1498, 2000.
    [52] O. Powell, “Single-mode condition for silicon rib waveguides,” Journal of Lightwave Technology, vol. 20, no. 10, pp. 1851-1855, 2002.
    [53] M. K. Smit and Cor van Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. of Selected Topics in Quantum Electronics, vol. 2, no. 2, pp. 236-250, 1996.
    [54] A. Kaneko, T. Goh, H. Yamada, T. Tanaka and I. Ogawa, “Design and applications of silica-based planar ligntwave circuits,” IEEE J. Selected Topics in Quantum Electron., vol. 5, no. 5, pp. 1227-1235, 1999.
    [55] M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electronics Letters, vol. 24, vol. 7, pp. 385-386, 1988.
    [56] M. K. Smit and C. V. Dam, “Phasar-based WDM-device: Principles, design and applications,” IEEE J. Selected Topics in Quantum Electron., vol. 2, no. 2,, pp. 236-250, 1996.
    [57] P. Munoz, D. Pastor and J. Capmany, “Modeling and design of arrayed waveguide gratings,” Journal of Lightwave Technology, vol. 20, no. 4, pp. 661-674, 2002.
    [58] M.R. Amersfoort, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, A. Rajhel, and C. Caneau,”8×2nm polarization-independent WDM detector based on compact arrayed waveguide demultiplexer,” in Proc, IPR’95, PD-3.
    [59] C. Dragone, ”An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett., vol. 3, pp. 896-899, 1991.
    [60] R. Adar, C. H. Henry, C. Dragone, R. C. Kistler and M. A. Milbrodt, “Broad-band array multiplexers made with silica waveguides on silicon,” Journal of Lightwave Technology, vol. 11, pp. 212-218, 1993.
    [61] M. D. Feit and J. A. Fleck, Jr., “Computation of mode properties in optical fiber waveguides by a propagating beam method,” Appl. Opt., vol. 19, no. 7, pp. 1154-1163, 1980.
    [62] P. Danielsen, “ Two-dimensional propagating beam analysis of an electrooptic waveguide modulator,” IEEE J. Quantum Electron., vol. 20, pp. 1093-1097, 1984.
    [63] A. Neyer, W. Mevenkamp, L. Thylen and B. Lagerstrom, “A beam propagation method analysis of active and passive waveguide crossings,” Journal of Lightwave Technology., vol. 3, pp. 635-642, 1985.
    [64] Katsunari Okamoto, Fundamentals of Optical Waveguides, Academic Press, 2000.
    [65] R. Scarmozzino, A. Gopinath, R. Pregla and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 1, pp. 150-160, 2000.
    [66] D. Yevick and B. Hermansson, “New formulations of the matrix beam propagation method: Application of rib waveguides,” IEEE J. Quantum Electron., vol. 25, pp.221-229, 1989.
    [67] D. Yevick and B. Hermansson, “Efficient beam propagation method techigques,” IEEE Quantum Electron. Vol.26, pp.109-112, 1990.
    [68] B. Hermanssoon, D. Uevick, W. Bardyszewski, and M. Glasner, “ The unitary of split-operator finite difference and finite-element methods: Applications to longitudinally varying semiconductor rib waveguide,” Journal of Lightwave Technology, vol. 8, pp. 1866-1973, 1990.
    [69] Y. Chung and N. Dagli, “ Explicit finite difference beam propagation: Application to semiconductor rib waveguide Y-junction analysis,” Electron. Lett., vol. 26, pp. 711-713, 1990.
    [70] W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” Journal of Quantum Electronics, vol. 29, pp. 26-39, 1993.
    [71] D. Yevick and M. Glasner, “Analysis of forward wide-angle light propagation in semiconductor rib waveguides and integrated-optic structures,” Electron. Lett., vol. 25, pp. 1611-1613, 1989.
    [72] K. Okamoto, M. Okuno, A. Himeno, and Y. Ohmori, “16-channel optical add/drop multiplexer consisting of arrayed-waveguide gratings and double-age switches,” Electron. Lett., vol. 32, no.16, pp. 1471-1472, 1996.
    [73] Noguchi, K. Koike, Y. Tanobe, H. Harada, K. Matsuoka, M., ”Field trial of full-mesh WDM network (AWG-STAR) in metropolitan/local area,” Journal of Lightwave Technology, Vol. 22, pp.329 – 336, Feb. 2004
    [74] Kawai T. Obara H., “Crosstalk reduction in N×N WDM multi/demultiplexers by cascading small arrayed waveguide gratings (AWG's),” Journal of Lightwave Technology, vol. 15, pp. 1929 – 1937, Oct. 1997
    [75] S. Y. Kim, S. H Han, J. S. Lee, “WDM channel wavelength monitoring by periodically modulating the AWG temperature,” Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002 , pp.748 – 749, 17-22 March 2002
    [76] Fan, C. Maier M. Reisslein M., “The AWG/spl par/PSC network:a performance-enhanced single-hop WDM network with heterogeneous protection,” Journal of Lightwave Technology, vol. 22, Issue: 5, pp.1242 - 1262, May 2004
    [77] Maier M. Scheutzow M. Reisslein, M., “The arrayed-waveguide grating-based single-hop WDM network: an architecture for efficient multicasting”, Journal on Selected Areas in Communication, vol. 21 , Issue: 9 , pp. 1414 – 1432, Nov. 2003
    [78] Themistos C. Rajarajan M. Rahman B.M.A. Grattan K.T.V. ,” Characterization of MMI- and AWG-based N×N devices for WDM applications”, Electrotechnical Conference, 2000. MELECON 2000. 10th Mediterranean , pp. 27 - 30 vol.1, May 2000
    [79] S.M. Gemelos, D. Wonglumsom, L.G. Kazovsky, “Impact of crosstalk in an arrayed-waveguide router on an optical add-drop multiplexer,” IEEE Photonics Technology Letters, vol. 11, pp. 349–351, 1999.
    [80] J.K. Kim, Y.C. Chung, “Simple optical add-drop multiplexer using 2/spl times/N arrayed-waveguide grating,” Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002 , pp. 737–738, 2002.
    [81] J.J.O. Pires, N. Parnis, E. Jones, M. O'Mahony, “Crosstalk implications in full-mesh WDM ring networks using arrayed-waveguide grating OADMS,” Optical Communication, 1998. 24th European Conference on, vol. 1 , pp. 541–542, 1998.
    [82] M.C. Parker, F. Farjady, S.D. Walker, “Optimised wavelength-set multi-stage broadband access network employing arrayed-waveguide grating routers,” IEE Colloquium on Multiwavelength Optical Networks: Devices, Systems and Network Implementations (Ref. No. 1998/257), pp. 4/1–4/4 17, June 1998.
    [83] K. Okamoto, A. Kaneko, M. Itou, “Array waveguide grating routers for 50 GHz applications,” Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC '99. Technical Digest, vol. 1, pp. 190 – 192, 21–26 Feb. 1999.
    [84] Chung Char-Dir, “Coherent and differentially coherent detections of orthogonally multiplexed orthogonal phase-modulated signals,” IEEE Transactions on Communications, vol. 51, no. 3, pp. 428–440, March 2003.
    [85] G. A. Vawter, V. M. Hietala, S. H. Kravitz, “Digital optical phase control in ridge-waveguide phase modulators,” IEEE Photonics Technology Letters, vol. 5 , no. 3, pp. 313–315, March 1993.
    [86] R. A. H. Lewis, R. A. Perrott, “Multiple beam stripline network for phased array applications,” IEE Colloquium on Multiple Beam Antennas and Beamformers, pp. 4/1–4/5, Nov. 1989.
    [87] P. Akkaraekthalin, C. Sawangnate, V. Vivek, “Conductor-backed coplanar waveguide directional coupler and its use for a varactor-tuned 90° phase shifter,” The 2000 IEEE Asia-Pacific Conference on Circuits and Systems, 2000. IEEE APCCAS 2000, pp. 525–528, 4-6 Dec. 2000
    [88] A. J. Weierholt, S. Neegard, “Theory of directional couplers including transition region phase shifts,” IEEE Journal of Quantum Electronics, vol. 26, no. 7, pp. 1227 – 1233, July 1990.
    [89] S. H. Li, C. M. Liaw, “Development of three-phase switch-mode rectifier using single-phase modules,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40, no. 1, pp. 70–79, Jan. 2004.
    [90] K. Takayama, K. Habara, H. Miyazawa, A. Himeno, “High-frequency operation of a phase-locked loop-type clock regenerator using a 1×2 optical switch as a phase comparator,” IEEE Photonics Technology Letters, vol. 4 , no. 1 , pp. 99–101, Jan. 1992.
    [91] Cho Won-Sun, Lim Youn-Sub, Choi Young-Wan, “Novel structures of traveling-wave MQW electro-absorption modulators for 1.55 μm operation,” The Pacific Rim Conference on Lasers and Electro-Optics, 1999. CLEO/Pacific Rim '99., vol. 2 , pp. 527–528, 1999.
    [92] S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photonics Technology Letters, vol. 13 , no. 4 , pp. 364–366, April 2001.
    [93] C. H. Shin, M. Ohtsu, “Homodyne optical phase locking of resonant cavity coupled semiconductor lasers,” IEEE Journal of Quantum Electronics, vol. 29 , no. 2 , pp. 374–385, Feb. 1993.
    [94] G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.55μm in silicon etalon,” Electron, vol. 28, pp. 83–85, 1992.
    [95] P. Katila, P. Heimala, J. Aarnio, “Thermo-optically controlled ring resonator on silicon,” Electronics Letters, vol. 32, no. 11, 23, pp. 1005–1006, May 1996.
    [96] W. Y. Hwang, M. C. Oh, H. Park, J. H. Ahn, S. G. Han, H. G. Kim, “Polarization stabilizer using a polarization splitter and a thermooptic polymer waveguide device,” IEEE Photonics Technology Letters, vol. 10, no. 12, pp. 1736–1738, Dec. 1998.
    [97] S. R. Giguere, L. Friedman, and R. A. Soref, “Simulation studies of silicon electro-optica waveguide devices,” J. Appl. Phy., vol. 68, pp. 4964-4970.
    [98] M. Abe, T. Kitagawa, K. Hattori, A. Himeno, Y. Ohmori, “Electro-optic switch constructed with a poled silica-based waveguide on a Si substrate,” Electronics Letters, vol. 32, no. 10, pp. 893–894, 9 May 1996.
    [99] C. K. Tang, G. T. Reed, A. J. Walton, and A. G. Rickman, ”Low-loss, single-mode, Optical Phase Modulator in SIMOX Material,” Journal of Llightwave technology, vol. 12, no. 8, August 1994.
    [100] P. D. Hewitt, G. T. Reed, “Improving the response of optical phase modulators in SOI by computer simulation,” Journal of Lightwave Technology, vol. 18, no. 3, pp. 443–450, March 2000.
    [101] P. J. Kajenski, P. L. Fuhr, D.R Huston, “Mode coupling and phase modulation in vibrating waveguides,” Journal of Lightwave Technology, vol. 10, no. 9, pp. 1297–1301, Sept. 1992.
    [102] M. C. Parker, S. D. Walker, “Design of arrayed-waveguide gratings using hybrid Fourier-Fresnel transform techniques,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, no. 5, pp. 1379–1384, Sept.-Oct. 1999.
    [103] J. A. Lazaro, R. Wessel, J. Koppenborg, G. Dudziak, I.J. Blewett, “Inverse Fourier transform method for characterizing arrayed-waveguide gratings,” IEEE Photonics Technology Letters, vol. 15 , no. 1 , pp. 93–95, Jan. 2003.

    QR CODE