簡易檢索 / 詳目顯示

研究生: 賴羽庭
Lai, Yu-Ting
論文名稱: 有機催化連鎖1,4-/縮醛/半縮醛加成反應合成苯併二氫吡喃酮架構
Organocatalytic Synthesis of Chromanone Derivatives via Michael/Acetalization/Hemiacetalization Reaction Sequence
指導教授: 陳焜銘
Chen, Kwun-Min
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 100
中文關鍵詞: 有機催化連鎖反應1,4-加成反應縮醛反應半縮醛反應一鍋化
英文關鍵詞: organocatalysis, domino reaction, Michael reaction, acetalization, hemiacetalization, one-pot
DOI URL: https://doi.org/10.6345/NTNU202202394
論文種類: 學術論文
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

運用有機小分子進行不對稱催化之連鎖反應,為高效率建構多重鍵結與立體中心之策略。其中,含氧之多環結構,常見於天然物分子中並具廣泛的生物活性,有效建構高光學純度的多環含氧雜環化合物,在有機合成領域中備受重視。
本實驗室利用α,α-雙苯基脯胺醇矽醚類催化劑與酸性添加劑,進行共催化,促使α,β-不飽和醛類和2-(乙醯乙醯基)苯酚,於最佳化的條件下,進行 Michael/Acetalization/Hemiacetalization之連鎖反應,生成半縮醛產物,再進一步經由氯鉻酸吡啶鹽一鍋化的氧化方式,生成具有三個連續掌性中心之三環苯併二氫吡喃酮衍生物,有著優異的產率(up to 97% yield)及立體選擇性(>20:1 dr and up to 94% ee)。

The construction of highly complex scaffold with several stereogenic centers could be accomplished by organic small molecules in asymmetric domino reactions. The chromanone is one of common heterocyclic compounds in nature. In addition, their derivatives have been shown with a wide range of biological properties. Therefore, it’s important to develop effective methods to conduct a series of highly stereoselective compounds in organic asymmetric synthesis.
An efficient strategy has been disclosed to afford tricyclic chromanone derivatives by treating with α,β-unsaturated aldehydes and 2-(acetoacetyl)phenols in our laboratory. After extensive optimization studies, the treatment of 20 mol% of α,α- diphenyl-L-prolinol trimethyl silyl ether and benzoic acid would give the high level of optically pure product which were bearing 3 stereogenic centers. This reaction was proceeded through Michael/Acetalization/Hemiacetalization sequence, the hemiacetal products were then oxidized by PCC in one-pot manner to achieve lactone derivatives with outstanding chemical yields(up to 97%)and good stereoselectivies (>20:1 dr and up to 94% ee).

第一章 序論 1 1-1 前言 1 1-2 有機不對稱合成方法 4 1-3 有機催化劑的發展 5 1-4 有機不對稱胺催化 12 第二章 實驗結果與討論 25 2-1 多環含氧雜環化合物 25 2-2 2-(乙醯乙醯基)苯酚合成多環狀分子 25 2-3 2-(乙醯乙醯基)苯酚之合成及光譜分析 27 2-4 連鎖不對稱有機催化反應之合成 28 2-4-1 有機催化劑的篩選 28 2-2-2 反應溶劑的篩選 30 2-2-3 添加劑效應 31 2-2-4 優化反應之探索 33 2-2-5 結構分析 34 2-2-6 不同取代基之探討 40 2-2-7 反應機構之探討 42 2-2-8 結論 43 第三章 實驗流程與數據 45 3-1 分析儀器及基本實驗操作 45 3-2 有機不對稱連鎖 Michael/Acetalization/Hemiacetalization 反應之實驗步 47 3-3 光譜數據 48 第四章 參考資料 61 附錄一 1H及13C-NMR 光譜圖 65 附錄二 X-ray 結構分析及數據 91

1.Nguyen, L. A.; He, H.; Chuong, P.-H. Int J Biomed Sci. 2006, 2, 85.
2.Bredig, G.; Fiske, W. S. Biochem. Z. 1912, 7.
3.(a) Pracejus, H. Justus Liebigs Ann. Chem. 1960, 634, 9.
(b) Pracejus, H.; Mätje, J. H. Prakt. Chem. 1964, 24, 195.
4.(a) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem. Int. Ed. 1971, 10, 496.
(b) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615.
5.(a) List, B.; Lerner, R. A.; Barbas III, C. F. J. Am. Chem. Soc. 2000, 122, 2395.
(b) List, B. Tetrahedron 2002, 58, 5573.
6.Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.
7.(a) Oku, J.; Inoue, S. J. C. S. Chem.Comm. 1981, 229.
(b) Oku, J.-I.; Ito, N.; Inoue, S. Macromol. Chem. 1982, 183, 579.
8.(a) Juliá, S.; Guixer, J.; Masana, J.; Rocas J.; Colonna, S.; Annuziata, R.; Molinari, H. J. Chem. Soc., Perki Trans.,1982, 1, 1317.
(b) Juliá, S.; Masana, J.; Vega,J. C. Angew.Chem. Int. Ed. Engl. 1980, 19, 929.
9.Palumbo, C.; Guidotti, M. Science Open Research 2015
( DOI: 10.14293/S2199-1006.1.SOR-CHEM.AGZIIB.v3 )
10.(a) Seayad, J.; List, B. Org Biomol Chem. 2005, 3, 719.
(b) Bella ,M.; Gasperi, T. Synthesis. 2009, 10, 1583.
11.Doyle, A. G.; Jacobsen, E. N. Chem Rev. 2007, 107, 5713.
12.Knowles, R. R.; Jacobsen, E. N. PNAS 2010, 107, 20678.
13.(a) Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Org Lett. 2005, 7, 1967.
(b) Schreiner, .P. R.; Wittkopp, A. Org Lett. 2002, 4, 217.
(c) Lattanzi, A. Adv Synth Catal. 2006, 348, 339.
(d) Reddy, B. V. S.; Reddy, S. M.; Swain, M.; Dudem, S.; Kalivendi, S. V.; Reddy C.S. RSC Adv. 2014, 4, 9107.
14.Jørgensen, K. A.; Johannsen, M.; Yao, S.; Audrain, H.; Thorhauge, J. Acc. Chem. Res. 1999, 32, 605.
15.Jensen, K. L.; Dickmeiss, G.; Jiang, H.; Albrecht, L.; Jørgensen, K. A. Acc. Chem. Res. 2012, 45, 248.
16.Juhl, K.; Jørgensen, K. A. J. Am. Chem. Soc. 2002, 124, 2420.
17.Jensen, K. B.; Thorhauge, J.; Hazell, R. G.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2001, 40, 160.
18.Halland, N.; Hansen, T.; Jøgensen, K. A. Angew. Chem. Int. Ed. 2003, 42, 4955.
19.Movassaghi, M.; Jacobsen, E. N. Science 2002, 298, 1904.
20.Juhl, K.; Jørgensen, K.A. Angew. Chem. Int. Ed. 2003, 42, 1498.
21. Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjærsgaard, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296.
22.(a) Bakshi, R. K.; Shibata, S.; Corey, E. J. J. Am. Chem. Soc. 1987, 109, 5551.
(b) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212.
23.Marigo, M.; Schulte,T.; Franzén, J.; Jørgensen, K. A. J. Am. Chem. Soc., 2005, 127, 15710.
24.Enders, D.; Hüttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861.
25.(a) Rios, R.; Sundén, H.; Ibrahem, I.; Zhao, G.-L.; Eriksson, L.; Córdova, A. Tetrahedron Lett. 2006, 47, 8547;
(b) Sunden, H. ; Ibrahem, I.; Zhao, G.-L.; Eriksson, L.; Córdova, A. Chem. Eur. J. 2007, 13, 574.
(c) Zu, L.; Li, H.; Xie, H.; Wang, J.; Jiang, W.; Tang, Y.; Wang, W. Angew. Chem. Int. Ed. 2007, 46, 3732.
26.(a) Franke, P. T.; Richter, B.; Jørgensen, K. A. Chem. Eur. J. 2008, 14, 6317.
(b) Rueping, M.: Sugiono, E.; Merino, E. Chem.Eur. J. 2008, 14, 6329
27.Anwar, S.; Chang, H. J.; Chen, K. Org. Lett. 2011, 13, 2200.
28.Chen,J.-H.; Chang, C.; Chang, H.-J.; Chen, K. Org. Biomol. Chem. 2011, 9, 7510.
29.Wen,S.-S.; Wang, J.; Luo,Y.-M. ;Yang, H. Tetrahedron 2014, 70, 9314.
30.Han,J.; Wang, T.; Feng,S.; Li, C.; Zhang, Z. Green Chem. 2016, 18, 4092.
31.Nishinaga, A.; Ando, H.; Marayama, K.; Mashino, T. Synthesis 1992, 839.

無法下載圖示 本全文未授權公開
QR CODE