Basic Search / Detailed Display

Author: 陳泰廷
Tai-Ting Chen
Thesis Title: 不同運動強度對學齡前孩童執行功能的影響
Effects of different exercise intensities on preschoolers' executive function
Advisor: 洪聰敏
Hung, Tsung-Min
Degree: 碩士
Master
Department: 運動競技學系
Department of Athletic Performance
Thesis Publication Year: 2012
Academic Year: 100
Language: 中文
Number of pages: 82
Keywords (in Chinese): 身體適能身體活動認知控制
Keywords (in English): physical fitness, physical activity, cognitive control
Thesis Type: Academic thesis/ dissertation
Reference times: Clicks: 200Downloads: 46
Share:
School Collection Retrieve National Library Collection Retrieve Error Report

雖然過去研究已證實身體活動對執行功能有益,但在學齡前孩童上僅探討身體適能或動作能力對執行功能上的改變,運動強度是否有影響則未有探討。目的:探討不同運動強度對學齡前孩童執行功能的影響。 方法:分成中強度與低強度二組各13人,實施二個月的足球課程,以Polar錶測量心跳監控運動強度,於介入前後實施體適能測驗 (一分鐘仰臥起坐、閉眼單足立、坐姿體前彎、立定跳遠與身體質量指數) 與Flanker執行控制作業並記錄事件關連電位。結果:二組前測時並無顯著差異,後測時中強度組與低強度組在Flanker作業上的反應時間與正確率皆有顯著上升,而且P3振幅顯著變大和P3潛伏時間縮短。介入效果可能來自於運動,但是成熟效應、測驗效應、或彼此間的交互作用則無法排除。結論:中低強度運動所產生對執行控制功能正面的影響幾乎一致。

Although the past studies have confirmed that physical activity is good for executive functions, the limited effects of physical fitness or motor ability were focused on the executive function changes in preschoolers. Moreover, exercise intensity was not also controlled. Purpose: This study aimed to explore different exercise intensity effects on executive function in preschoolers. Methods:Two groups were divided into moderate and low intensity groups, 13 children each, participating in football courses for two months with Polar watches to monitor heartbeats to control density. Flanker task and physical fitness test (one minute sit-up, closed-eyes on one foot stand, sit and reach, standing long jump and body mass index) were performed before and after interventional period. Results: Before the test, there was no significant difference between both. Results indicated that two groups performed more accurately on the reaction time and faster on the response time, and P3 amplitude increased and P3 latency shortened significantly. Interventional effect might be due to exercise, but maturation effect, repeated testing effect or even interactions between both could not be ruled out. Conclusion: Low-and-High intensity exercise almost had the same positive impact on control functions.

目次 中文摘要 i 英文摘要 ii 誌謝 iii 目次 iv 表次 v 圖次 vi 第壹章 緒論 1 第一節、問題背景 1 第二節、研究目的 7 第三節、研究問題 7 第四節、研究假設 7 第五節、研究範圍與限制 8 第六節、名詞解釋 8 第貳章 相關文獻探討 10 第一節、學齡前孩童的認知發展 10 第二節、學齡前孩童身體活動與認知功能之關係 11 第三節、有氧運動與大腦認知功能的神經機轉 16 第四節、運動強度對認知功能相關研究之探討 18 第五節、使用事件關聯電位在認知功能上的研究 20 第參章 方法 23 第一節、研究架構 23 第二節、研究對象與抽樣方法 24 第三節、研究工具 24 第四節、測驗流程 26 第五節、資料處理 29 第六節、統計分析 30 第肆章 結果 32 第伍章 討論 45 參考文獻 53 附錄一、腦波施測說明書 66 附錄二、家長同意書 68 附錄三、參與研究兒童基本資料、健康情況記錄表 69 附錄四、足球課程設計 70 個人小傳 73

中文部分
幼稚教育法 (民98年6月17日) 。
林清和 (2006)。運動學習程式學二版。台北縣:泰宇。
洪蘭 (譯) (2009)。大腦當家─靈活用腦12守則,學習工作更上層樓 (原作者:J. Medina)。台北市:遠流。(原著出版年:2009)
郭方鈞 (2003)。身體活動對學前兒童認知表現的影響之事件關聯電位研究。未出版碩士論文,臺北市立體育學院,臺北市。
陳玟瑾 (2007)。學前男童身體活動能力與反應時間及事件關聯電位之關係。未出版碩士論文,臺北市立體育學院,臺北市。
唐惠君、柯天路、卓俊伶、洪聰敏 (2008)。學齡前兒童身體活動課程與工作記憶:腦波功率與相干性。臺灣運動心理學報,12,39-60。
張育愷、林珈余 (2010)。身體活動對孩童認知表現的影響。中華體育季刊,24 (2),83-92。
趙思瑩 (2008)。運動介入對學前兒童反應時間與事件關聯電位之影響。未出版碩士論文,臺北市立體育學院,臺北市。
鄧世雄、黃正平、黃秀梨、張宏哲、陳麗華、葉炳強 (2010)。失智症患者與其家屬之整合型長期照顧服務模式研究。行政院衛生署委託之專題研究成果報告 (編號:DOH099-TD-M-113-098005),未出版。

英文部分
Anderson, V. (2002). Executive function in children: An introduction. Child Neuropsychology, 8, 69-70.
Anderson, V., Anderson, P., Northam, E., Jacobs, R., & Catroppa, C. (2001). Development of executive functions through late childhood and adolescence in an Australian sample. Developmental Neuropsychology, 20, 385-406.
Arent, S. M., & Landers, D. M. (2003). Arousal, anxiety, and performance: a reex-
amination of the inverted-U hypothesis. Research Quarterly for Exercise and
Sport, 74 (4), 436–444.
Audiffren, M. (2009). Acute exercise and psychological functions: a cognitive-energetics approach. In: McMorris, T., Tomporowski, P.D., Audiffren, M. (Eds.), Exercise and cognitive function. John Wiley & Sons, Hoboken, NJ, pp. 3–39.
Audiffren, M., Tomporowski, P., Zagrodnik, J.A., 2008. Acute aerobic exercise and information processing: energizing motor processes during a choice reaction time task. Acta Psychology Sinica, 129, 410–419.
Baddeley, A.D. (2003). Working memory and language: an overview. Journal of Communication Disorders, 36, 189–208.
Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. A. Bower (ed.), Recent advances in learning and motivation (Vol. 8). New York: Academic Press.
Badenhop, D. T., Cleary, P. A., Schaal, S. F., Fox, E. L., & Bartels, R. L. (1983). Physiological adjustment of higher or lower intensity exercise in elders. Medicine and Science in Sports and Exercise, 15, 496-502.
Barrett, T. R., & Watkins, S. K. (1986). Word familiarity and cardiovascular health as determinants of age-related recall differences. Journal of Gerontology, 41, 222-224.
Battig, W. F. (1972). Intratask interference as a source of facilitation in transfer and retention. In R. F. Thompson & J. F. Voss (Eds.), Topics in learning and performance (pp. 131–159). New York: Academic Press.
Best, J. R. (2010). Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Development Review, 30, 331-351.
Booth, F. W., & Lees, S. J. (2006). Physically active subjects should be the control group. Medicine and science in sports and exercise, 38, 405–406.
Budde, H., Voelcker-Rehage, C., Pietraβyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience Letters, 441, 219-223.
Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. & Gabrieli, J. D.E. (2002). Immature frontal lobe contribution to cognitive control in children: evidence from fMRI. Neuron, 33, 301-311.
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215–222.
Carey, J. R., Bhatt, E., & Nagpal, A. (2005). Neuroplasticity promoted by task complexity. Exercise and Sport Sciences Reviews, 33, 24–31.
Carter, C. S., Mintun, M., & Cohen, J. D. (1995). Interference and facilitation effects during selective attention: An H2150 PET study of Stroop task performance. Neuroimage, 2, 264–272.
Caterino, M. C., & Polak, E. D. (1999). Effects of two types of activity on the performance of second-, third-, and fourth-grade students on a test of concentration. Perceptual and Motor Skills, 89, 245–248.
Chaddock, L., Erickson, K. I., Prakash, R. S., VanPatter, M., Voss, M. W., Pontifex, M. B., …, Kramer, A. F. (2010). Basal ganglia volume is associated with aerobic fitness in preadolescent children. Developmental Neuroscience, 32, 249-256.
Chang, Y. K., & Etnier, J. L. (2009). Effects of an acute bout of localized resistance exercise on cognitive performance in middle-aged adults: A randomized controlled trial study. Psychology of Sport and Exercise, 10(1), 19-24.
Chang, Y. K., & Etnier, J. L. (2009). Exploring the dose-response relationship between resistance exercise intensity and cognitive function. Journal of Sport and Exercise Psychology, 31(5), 640-656.
Churchill, J. D., Galvez, R., Colcombe, S., Swain, R. A., Kramer, A. F., & Greenough, W. T. (2002). Exercise, experience and the aging brain. Neurobiology of Aging, 23(5), 941–955.
Cian, C., Barraud, P. A., Melin, B., & Raphel, C. (2001). Effects of fluid ingestion on
cognitive function after heat stress or exercise-induced dehydration. Interna-
tional Journal of Psychophysiology, 42, 243–251.
Clarkson-Smith, L., & Hartley, A. A. (1989). Relationships between physical exercise
and cognitive abilities in older adults. Psychology and Aging, 4, 183–189.
Colcombe, S. J., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological Science, 14, 125-130.
Collardeau, M., Brisswalter, J., Vercruyssen, F., Audiffren, M., Goubault, C. (2001).
Single and choice reaction time during prolonged exercise in trained subjects:
influence of carbohydrate availability. European Journal of Applied Physiology, 86, 150–156.
Cotman, C. W., Berchtold, N. C., & Christie, L. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 464–473.
Curry, J. G., & Polich, J. P. (1992). P300, global probability, and stimulus sequence
effects in children. Developmental Neuropsychology, 82, 185–202.
Davis, M. M., Gance-Cleveland, B., Hassink, S., Johnson, R., Paradis, G., & Resnicow, K. (2007). Recommendations for prevention of childhood obesity. Pediatrics, 120(4), 229-253.
Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Development, 71, 44–56.
Dishman, R. K., Berthoud, H., Booth, F. W., Cotman, C. W., Edgerton, V. R., Fleshner, M. R.,…,Zigmond, M. J. (2006). Neurobiology of exercise. Obesity, 14, 345–354.
Donchin, E., Coles, M.G.H., 1988. Is the P300 component a manifestation of
context updating? Behavioral and Brain Sciences, 11, 357–427.
Ekstrand, J., Hellsten, J., & Tingström, A. (2008). Environmental enrichment, exercise and corticosterone affect endothelial cell proliferation in adult rat hippocampus and prefrontal cortex. Neuroscience Letters, 442, 203–207.
Ellemberg, D., & St-Louis-Deschens, M. (2010). The effect of acute physical exercise on cognitive function during development. Psychology of Sport and Exercise, 11, 122-126.
Elshout, J. J., & Veenman, M. V. J. (1992). Relation between intellectual ability and working method. Journal of Educational Research, 85, 134-143.
Eriksen, C. W., & Eriksen, B. A. (1974). Effects of noise letters upon the identification of a target letter in a non-search task. Perception and Psychophysics, 16, 143–149.
Eriksen, C. W., & Schultz, D. W. (1979). Rate of information processing in visual search: A continuous flow conception and experimental result. Perception & Psychophysics, 25, 249-263.
Etnier, J. L., Salazar, W., Landers, D. M., Petruzello, S. J., Han, M., & Nowell, P. (1997). The influence of physical fitness and exercise upon cognitive functioning: a meta-analysis. Journal of Sport and Exercise Psychology, 19, 249–277.
Fabel, K., & Kempermann, G. (2008). Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromolecular Medicine, 10, 59-66.
Ferris, L. T., Williams, J. S., & Shen, C. (2007). The effects of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine & Science in Sports & Exercise, 39, 728–734.
Fleury, M., Bard, C., Jobin, J., & Carriere, L. (1981). Influence of different types of physical fatigue on a visual detection task. Perceptual and Motor Skills, 53, 723–730.
Gabbard, C., & Barton, J. (1979). Effects of physical activity on mathematical computation among young children. The Journal of Psychology, 103, 287–288.
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., … Rapoport, J. L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2, 861–863.
Clarkson-Smith, L., & Hartley, A. A. (1989). Relationships between physical exercise
and cognitive abilities in older adults. Psychology and Aging, 4, 183–189.
Haga, M. (2008) Physical fitness in children with movement difficulties. Physiotherapy, 94, 253-259.
Harris, D. (1940). Factors affecting college grades: a review of the literature, 1930-1937. Psychological Bulletin, 37, 125-166.
Henderson, S.E., & Sugden, D.A. (1992). The Movement Assessment Battery for Children. San Antonio, TX: The Psychological Corporation.
Heyn, P., Abreu, B. C., & Ottenbacher, K. J. (2004). The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis.
Archives of Physical Medicine and Rehabilitation, 85, 1694–1704.
Hillman, C. H., Castelli, D. M., & Buck, S. M. (2005). Aerobic fitness and
neurocognitive function in healthy preadolescent children. Medicine &
Science in Sports & Exercise, 37, 1967–1974.
Hillman, C. H., Motl, R. W., Pontifex, M. B., Posthuma, D., Stubbe, J. H., Boomsma, D. I., & de Geus, E. J. C. (2006). Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychology, 25, 678 – 687.
Hillman, C. H., Buck, S. M., Themanson, J. R., Pontifex, M. B., & Castelli, D. M. (2009). Aerobic fitness and cognitive development: event-related brain potential and task performance indices of executive control in preadolescent children. Health Psychology, 25, 678 – 687.
Hillman, C. H., Motl, R. W., Pontifex, M. B., Posthuma, D., Stubbe, J. H., Boomsma, D. I., & de Geus, E. J. C. (2006). Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychology, 25, 678 – 687.
Hinkle, J. S., Tuckman, B. W., & Sampson, J. P. (1993). The psychology, physiology, and the creativity of middle school aerobic exercisers. Elementary School Guidance & Counseling, 28, 133–145.
Hockey, G.R.J., Gaillard, A.W.K., Coles, M.G.H. (1986). Energetic Aspects of Human Information Processing. Nijhoff, Netherlands.
Holmes, P. V. (2006). Current findings in neurobiological systems’ response to exercise. In L. Poon, W. Chodzo-Zajko, & P. D. Tomporowski (Eds.), Active living, cognitive functioning, and aging (pp.75–89). Champaign, IL: Human Kinetics.
Hudon, C., Belleville, S., & Gauthier, S. (2009). The assessment of recognition memory using the remember/know procedure in amnestic mild cognitive impairment and probable Alzheimer’s disease. Brain and Cognition, 70, 171-179.
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex developmental changes and effects of aging. Brain Research, 163, 195–205.
Jonkman, L. M. (2006). The development of preparation, conflict monitoring and inhibition from early childhood to young adulthood: a Go/Nogo ERP study. Brain Research, 1097, 181–193.
Jonkman, L. M., Sniedt, F. L. F., Kemner, C. (2007). Source localization of the Nogo-N2: a developmental study. Clinical Neurophysiology, 118(5), 1069–1077.
Jones, T. A., Hawrylak, N., Klintsova, A. Y., & Greenough, W. T. (1998). Brain damage, behavior, rehabilitation, recovery, and brain plasticity. Mental Retardation and Developmental Disabilities, 4, 231–237.
Kail, R., Salthouse, T. A. (1994). Processing speed as a mental capacity. Acta Psychologica, 86, 199–225.
Kamijo, K., Nishihira, Y., Hatta, A., Kaneda, T., Wasaka, T., Kida, T., Kuroiwa, K. (2004). Differential influences of exercise intensity on information processing in the central nervous system. European Journal of Applied Physiology, 92, 305–311.
Kamijo, K., Nishihira, Y., Higashiura, T., & Kuroiwa, K. (2007). The interactive effect of exercise intensity and task difficulty on human cognitive processing. International Journal of Psychophysiology, 65, 114-121.
Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science. NY, New York: McGraw-Hill.
Kida, T., Nishihira, Y., Hatta, A., Wasaka, T., Tazoe, T., Sakajiri, Y., …, Takurou,
H. (2004). Resource allocation and somatosensory P300 amplitude during
dual task: effects of tracking speed and predictability of tracking direction.
Clinical Neurophysiology, 115, 2626–2628.
Klesges, R.C., Klesges, L.M., Eck, L.H., & Shelton, M.L. (1995). A longitudinal analysis of accelerated weight gain in preschool children. Pediatrics, 95 (1), 126–130.
Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., Chason, J., Vakil, E., Bardell, L., Boileau, R. A., & Colcombe, A. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418–419.
Kutas, M., McCarthy, G., Donchin, E., (1977). Augumenting mental chronometry: the P3 as a measure of stimulus evaluation time. Science, 197, 792–795.
Laidra, K., Pullmann, H., & Allik, J. (2007). Personality and intelligence as predictors of academic achievement: a cross-sectional study from elementary to secondary school. Personality and Individual Differences, 42, 441-451.
Levey, A., Lah, J., Goldstein, F., Steenland, K., & Bliwise, D. (2006). Mild cognitive impairment: an opportunity to identify patients at high risk for progression to Alzheimer’s Disease. Clinical Therapeutics, 28, 991-1001.
Lezak, M. D., Howieson, D. B., & Loring, D. W. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.
Luciana, M., & Nelson, C. A. (1998). The functional emergence of prefrontally-guided working memory systems in four- to eight-year-old children. Neuropsychologia,36, 273–293.
Magnié, M.N., Berman, S., Martin, F., Madany-Lounis, M., Suisse, G., Muhammad,
W., Dolisi, C. (2000). P300, N400, aerobic fitness, and maximal aerobic exercise. Psychophysiology, 37, 369–377.
McMorris, T., Collard, K., Corbett, J., Dicks, M., & Swain, J. P. (2008). A test of the catecholamines hypothesis for an acute exercise–cognition interaction. Pharmacology, Biochemistry and Behavior, 89, 106–115.
McMorris, T., & Graydon, J. (2000). The effect of incremental exercise on cognitive performance. International Journal of Sport Psychology, 31, 66–81.
Malinal, R. M. (1991). Fitness and performance: Adult health and the culture of youth. In R.J. Park & H.M. Eckert (Eds.), The Academy Papers: Vol. 24. New possibilities, new paradigms (pp. 30–38). Champaign, IL: Human Kinetics.
Mezzacappa, E. (2004). Alerting, orienting, and executive attention: Developmental properties and sociodemographic correlates in an epidemiological sample of young, urban children. Child Development, 75, 1373–1386.
Pesce, C., Crova, C., Cereatti, L., Casella, R., & Bellucci, M. (2009). Physical activity and mental performance in preadolescents: Effects of acute exercise on free-recall memory. Mental Health and Physical Activity, 2, 16-22.
Petruzzello, S. J., Landers, D. M., Hatfield, B. D., Kubitz, K., & Salazar, W. (1991).
A meta-analysis on the anxiety-reducing effects of acute and chronic exercise: Outcome and mechanisms. Sports Medicine, 11, 143-182.
Pontifex, M. B. & Hillman, C. H. (2007). Neuroelectric and behavioral indices of
interference control during acute cycling. Clinical Neurophysiology, 118, 570-580.
Piaget, J. (1952). The origins of intelligence in children. New York, N.Y.: Intelrnational Universities Press.
Piaget, J., & Inhelder, B. (1966). La psychologie de l’enfant [The psychology of the child]. France, Paris: Presses Universitaires de France.
Poest, C. A., Williams, J. R., Witt, D. D. & Atwood, M. E. (1990). Challenge me to move: Large muscle development in young children. Young Children, 45 (5), 4-10.
Polich, J., Kok, A. (1995). Cognitive and biological determinants of P300: an integrative review. Biological Psychology, 41, 103–146.
Ridderinkof, K. R., & Van Der Molen, M. W. (1995). A psychophysiological analysis of developmental differences in the ability to resist interference. Child Development, 66, 1040-1056.
Ridderinkhof, K. R., van der Molen, M. W., Band, P. H., & Bashore, T. R. (1997). Sources of interference from irrelevant information: A developmental study. Journal of Experimental Child Psychology, 65, 315–341.
Roth, K., Mauer, S., Obinger, M., Ruf, K. C., Craf, C., Kriemler, S., …, Hebestreit, H. (2010). Prevention through Activity in Kindergarten Trial (PAKT): A cluster randomized controlled trial to assess the effects of an activity intervention in preschool children. BMC Public Health, 10: 410.
Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Lercari, L. P., & Posner, M. I. (2004). Development of attentional networks in childhood. Neuropsychologia, 42, 1029 –1040.
Rypma, B., & D’Esposito, M. (1999). The roles of prefrontal brain regions in components of working memory: Effects of memory load and individual differences. Process National Academic Science, 96, 6558-6563.
Sallis, J.F., Prochaska, J.J., & Taylor, W.C. (2000). A review of correlates of physical activity of children and adolescents. Medicine and Science in Sports and Exercise, 32, 963–975.
Sanders, A.F. (1986). Towards a model of stress and human performance. Acta Psychology Science, 53, 61–97.
Schinder, A. F., & Poo, M. (2000). The neurotrophin hypothesis for synaptic plasticity. Trends in Neuroscience, 23, 639–645.
Serrien, D. J., Ivry, R. B., & Swinnen, S. P. (2007). The missing link between action and cognition. Progress in Neurobiology, 82, 95–107.
Sibley, B.A., & Etnier, J.L. (2003). The relationship between physical activity and cognition in children: a meta-analysis. Pediatric Exercise Science, 15, 243–256.
Specker, B., & Binkley, T. (2003). Randomized trial of physical activity and calcium supplementation on bone mineral contentin 3- to 5-year-old children. Journal of Bone and Mineral Research, 18, 885-892.
Sternberg, R. J., & Kaufman, J. C. (1998). Human abilities. Annual Review of Psychology, 49, 479-502.
Stroth, S., Kubesch, S., Dieterle, K., Ruchsow, M., Heim, R., & Kiefer, M. (2009). Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents. Brain Research, 1269, 114-124.
Tamm L., Menon V., Reiss A. L. (2002). Maturation of brain function associated with response inhibition. The Journal of the American Academy of Child and Adolescent Psychiatry, 41(10), 1231–1238.
Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta
Psychologica, 112, 297–324.
Tomporowski, P. D., Davis, C. L., Lambourne, K., Gregoski, M., & Tkacz, J. (2008a). Task
switching in overweight children: effects of acute exercise and age. Journal of Sport and Exercise Psychology, 30, 497–511.
Tomporowski, P. D., Davis, C. L., Miller, P. H., & Naglieri, J. A. (2008b). Exercise and
children’s intelligence, cognition, and academic performance. Educational Psychology Review, 20, 111–131.
Trejo, J. L., LLorens-Martin, M. V., & Torres-Aleman, I. (2008). The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Molecular and Celluar Neuroscience, 37, 402-411.
Tsorbatzoudis, H., Barkoukis, V., Danis, A., & Gouios, G. (1998). Physical exertion in
simple reaction time and continuous attention of sport participants. Perceptual
and Motor Skills, 86, 571–576.
Tsujimoto, S., Yamamoto, T., Kawaguchi, H., Koizumi, H., & Sawaguchi, T. (2004). Prefrontal Cortical Activation Associated with Working Memory in Adults and Preschool Children: An Event-related Optical Topography Study (pp. 703-712). New York: Oxford University Press.
Tuckman, B. W., & Hinkle, J. S. (1986). An experimental study of the physical and psychological effects of aerobic exercise on schoolchildren. Health Psychology, 5(3), 197-207.
van der Borght, K., Havekes, R., Bos, T., Eggen, B. J. L., & Van der Zee, E. A. (2007). Exercise improves memory acquisition and retrieval in the Y-maze task: Relationship with hippocampul neurogenesis. Behavioral Neuroscience, 121, 324–334.
van Praag, H. (2006). Exercise, neurogenesis, and learning in rodents. In E. O. Acevedo & P. Ekkekakis (Eds.), Psychobiology of physical activity (pp. 61–74). Champaign, IL: Human Kinetics.
Vaynman, S. & Gomez-Pinilla, F. (2006). Revenge of the“sit”: how lifestyle impacts neuronal and cognitive health though molecular systems that interface energy metabolism with neuronal plasticity. Journal of Neuroscience Research, 84, 699–715.
Ward, J. (2010). The student’s guide to cognitive neuroscience (2th ed.). New York, NY: Psychology Press.
Whaley, M. H. (2006). ACSM’s guidelines for exercise testing and prescription (6th ed.). Baltimore, MD: Lippincott Williams & Wilkin.
Wiart, L., & Darrah, J. (2001). Review of four tests of gross motor development. Developmental Medicine & Child Neurology, 43, 275-285.
Wu, C. T., Pontifex, M. B., Raine, L. B., Chaddock, L., Voss, M. W., Kramer, A. F., Hillman, C. H. (2011). Aerobic fitness and response variability in preadolescent children performing a cognitive control task. Neuropsychology, 25(3), 333-341.
Yan, J. H., Thomas, J. R., & Thomas, K. T. (1998). Children's age moderates the effect of practice variability: a quantitative review. Research Quarterly for Exercise and Sport, 69 (2), 210-215.
Zelazo, P. D., Craik, F. I., & Booth, L. (2004). Executive function across the life span. Acta Psychologica, 115, 167-183.
Zelazo, P. D., & Muller, U. (2002). Executive function in typical and atypical development. In U. Goswami (ED.), Handbook of children cognitive development (pp. 445-469). Oxford: Blackwell.

QR CODE