研究生: |
戴子鈞 Dai, Zih-Jyun |
---|---|
論文名稱: |
以中孔沸石限制硫化銀奈米粒子及氧化石墨烯之合成、鑑定與應用 Syntheses, Characterizations and Applications of Mesoporous Zeolite-Confined Ag2S Nanoparticles and Graphene Oxide |
指導教授: |
劉沂欣
Liu, Yi-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 中孔洞沸石 、硫化銀奈米粒子 、硫化鋅奈米線 、氧化石墨烯 、增強拉曼散射 |
英文關鍵詞: | Mesoporous Zeolitic Thin Film, Ag2S nanoparticles, ZnS quantum wires, graphene oxide, Graphene-enhanced Raman scattering |
DOI URL: | https://doi.org/10.6345/NTNU202202936 |
論文種類: | 學術論文 |
相關次數: | 點閱:190 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以矽晶圓表面之中孔洞沸石薄膜,做為生長奈米結構的重要基材,並利用中孔洞來限制銀奈米粒子大小,及其整齊排列孔洞做為氧化石墨烯均勻沉積的生長環境,以達到製備複合材料與相關應用。
第一部份首先討論中孔洞沸石「表面矽烷化改質」對吸附不同電性銀源的影響。將吸附完銀源的中孔洞沸石粒子(MZN)進行銀化合物的奈米粒子生長,並經由電子顯微鏡、氮氣吸脫附和X光繞射光譜,對孔洞結構及奈米粒子大小進行分析鑑定。找出最佳化條件、並於中孔洞沸石薄膜(MZTF)上負載高密度的奈米粒子陣列,接續以Solution-Solid-Solid(SSS)法催化生長半導體奈米線。
第二部份為使用中孔洞沸石薄膜,以化學氣相沉積法於其表面生長氧化石墨烯(GO),經由拉曼光譜、電子顯微鏡、氮氣吸脫附和X光繞射光譜進行結構鑑定,証實中孔洞沸石薄膜的導電度提升兩個級數,並功證實有石墨稀增強拉曼散射(GERS)的特性。
The mesoporous zeolitic thin film (MZTF) grown on silicon wafer is an important template to grow secondary nanostructures. Intrinsic mesoporousity of MZTF has been employed to confine growths of Ag2S nanoparticles and graphene oxide due to vertical and uniform hexagonal mesochannels. These advantages are very critical to prepare hybrid materials for sensing and photovoltaic applications.
The first part demonstrates the influence of adsorbing different silver precursors via different surface silylation modification of mesoporous zeolite nanoparticles (MZN). Silver nanoparticles grown on MZN were examined by TEM, SEM and XRD. We conduct Ag2S nanoparticle-arrays on MZTF and successively grow ZnS quantum wires via SSS-mechanism.
The second part demonstrates uniform graphene oxides (GOs) grown directly at MZTF surface via chemical vapor decomposition method. GOs were examined by TEM, SEM, Raman and XRD spectrum. After growing GO onto MZTF, conductivity of original MZTF improves two orders of magnitutde. Additionally, GO-MZTF hybrid materials can be utilized to quench fluorescence of dyes and enhance Raman signal, namely graphene-enhanced Raman scattering (GERS).
(1) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992, 359, 710.
(2) Taguchi, A.; Schüth, F. Microporous Mesoporous Mater. 2005, 77, 1.
(3) Vallet-Regi, M.; Balas, F.; Arcos, D. Angew. Chem. Int. Ed. Engl. 2007, 46, 7548.
(4) Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410.
(5) Cong, H.; Becker, C. F.; Elliott, S. J.; Grinstaff, M. W.; Porco, J. A. J. Am. Chem. Soc. 2010, 132, 7514.
(6) Marambio-Jones, C.; Hoek, E. M. V. J. Nanopart. Res. 2010, 12, 1531.
(7) Yan, X.; Wang, L.; Qi, D.; Lei, J.; Shen, B.; Sen, T.; Zhang, J. RSC Adv. 2014, 4, 57743.
(8) Oliveira, R. d. S.; Camilo, F. F.; Bizeto, M. A. J. Solid State Chem. 2016, 235, 125.
(9) Wang, Y.-W.; Kao, K.-C.; Wang, J.-K.; Mou, C.-Y. J. Phys. Chem. C 2016, 120, 24382.
(10) Lee, S.-K.; Liu, X.; Sebastian Cabeza, V.; Jensen, K. F. Lab on a Chip 2012, 12, 4080.
(11) Wang, J.; Chen, K.; Gong, M.; Xu, B.; Yang, Q. Nano Lett. 2013, 13, 3996.
(12) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
(13) Ionescu, R.; George, A.; Ruiz, I.; Favors, Z.; Mutlu, Z.; Liu, C.; Ahmed, K.; Wu, R.; Jeong, J. S.; Zavala, L.; Mkhoyan, K. A.; Ozkan, M.; Ozkan, C. S. Chem. Commun. 2014, 50, 11226.
(14) Kim, K. K.; Hsu, A.; Jia, X.; Kim, S. M.; Shi, Y.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T.; Kong, J. Nano Lett. 2012, 12, 161.
(15) Lightcap, I. V.; Kamat, P. V. Acc. Chem. Res. 2013, 46, 2235.
(16) Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. Nano Research 2008, 1, 203.
(17) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
(18) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 4, 4806.
(19) Staudenmaier, L. Berichte der deutschen chemischen Gesellschaft 1898, 31, 1481.
(20) Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228.
(21) Eda, G.; Lin, Y.-Y.; Mattevi, C.; Yamaguchi, H.; Chen, H.-A.; Chen, I. S.; Chen, C.-W.; Chhowalla, M. Adv. Mater. 2010, 22, 505.
(22) Luo, Z.; Vora, P. M.; Mele, E. J.; Johnson, A. T. C.; Kikkawa, J. M. Appl. Phys. Lett. 2009, 94, 111909.
(23) Eda, G.; Mattevi, C.; Yamaguchi, H.; Kim, H.; Chhowalla, M. J. Phys. Chem. C 2009, 113, 15768.
(24) Zhu, M.; Li, X.; Guo, Y.; Li, X.; Sun, P.; Zang, X.; Wang, K.; Zhong, M.; Wu, D.; Zhu, H. Nanoscale 2014, 6, 4909.
(25) Bourlinos, A. B.; Gournis, D.; Petridis, D.; Szabó, T.; Szeri, A.; Dékány, I. Langmuir 2003, 19, 6050.
(26) Mungse, H. P.; Tu, Y.; Ichii, T.; Utsunomiya, T.; Sugimura, H.; Khatri, O. P. Adv. Mater. Interfaces 2016, 3, 1500410.
(27) Xie, L.; Ling, X.; Fang, Y.; Zhang, J.; Liu, Z. J. Am. Chem. Soc. 2009, 131, 9890.
(28) Benevides, J. M.; Overman, S. A.; Thomas, G. J. J Raman Spectrosc. 2005, 36, 279.
(29) Martyshkin, D. V.; Ahuja, R. C.; Kudriavtsev, A.; Mirov, S. B. Rev. Sci. Instrum. 2004, 75, 630.
(30) Begley, R. F.; Harvey, A. B.; Byer, R. L. Appl. Phys. Lett. 1974, 25, 387.
(31) McCamant, D. W.; Kukura, P.; Yoon, S.; Mathies, R. A. Rev. Sci. Instrum. 2004, 75, 4971.
(32) Swathi, R. S.; Sebastian, K. L. J. Chem. Phys. 2008, 129, 054703.
(33) Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. Nano Lett. 2010, 10, 553.
(34) Li, S.; Aphale, A. N.; Macwan, I. G.; Patra, P. K.; Gonzalez, W. G.; Miksovska, J.; Leblanc, R. M. ACS Appl. Mat. Interfaces 2012, 4, 7069.
(35) Huh, S.; Park, J.; Kim, Y. S.; Kim, K. S.; Hong, B. H.; Nam, J.-M. ACS Nano 2011, 5, 9799.
(36) Zhang, Y.; Liu, Y.; Li, C.; Chen, X.; Wang, Q. J. Phys. Chem. C 2014, 118, 4918.
(37) Zhu, G.; Zhang, S.; Xu, Z.; Ma, J.; Shen, X. J. Am. Chem. Soc. 2011, 133, 15605.
(38) Johra, F. T.; Lee, J.-W.; Jung, W.-G. J. Ind. Eng. Chem. 2014, 20, 2883.
(39) Jiang, B.; Tian, C.; Wang, L.; Xu, Y.; Wang, R.; Qiao, Y.; Ma, Y.; Fu, H. Chem. Commun. 2010, 46, 4920.
(40) Cui, P.; Lee, J.; Hwang, E.; Lee, H. Chem. Commun. 2011, 47, 12370.
(41) Jeong, H.-K.; Lee, Y. P.; Lahaye, R. J. W. E.; Park, M.-H.; An, K. H.; Kim, I. J.; Yang, C.-W.; Park, C. Y.; Ruoff, R. S.; Lee, Y. H. J. Am. Chem. Soc. 2008, 130, 1362.
(42) Zhou, L.-J.; Zhang, Y.-F.; Wu, L.-M. Nano Lett. 2013, 13, 5431.
(43) Lin, S.; Zhang, S.; Li, X.; Xu, W.; Pi, X.; Liu, X.; Wang, F.; Wu, H.; Chen, H. J. Phys. Chem. C 2015, 119, 19772.
(44) Ferrari, A. C.; Robertson, J. Phys. Review B 2000, 61, 14095.
(45) Wang, J. H.; Bartlett, J. D.; Dunn, A. C.; Small, S.; Willis, S. L.; Driver, M. J.; Lewis, A. L. Journal of Microscopy 2005, 217, 216.