簡易檢索 / 詳目顯示

研究生: 黃湘儒
論文名稱: 山苦瓜萃取物對巨噬細胞發炎反應的影響
指導教授: 吳文惠
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 63
中文關鍵詞: 山苦瓜動脈硬化巨噬細胞一氧化氮腫瘤壞死因子介白素-10
論文種類: 學術論文
相關次數: 點閱:236下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 動脈硬化是一種脂質、發炎細胞及結締組織在主動脈壁的堆積且為一長期緩慢的漸進式發炎疾病,而巨噬細胞參與動脈硬化發展的過程。研究顯示山苦瓜能夠降低前發炎因子 PGE2及nitric acid(NO)的分泌。本研究主要探討山苦瓜乙酸乙酯萃取物 (ethyl acetate extract, EAE)、乙酸乙酯萃取物之皂化物 (Saponifiable substances, S)、不皂化物(Non-saponifiable sunstances, NS),對巨噬細胞發炎反應之抑制功效,使用2381及CK兩種山苦瓜的品種,結果分述如下:(一)2381EAE、2381NS及2381S都能減少NO的產生及iNOS的表現。2381EAE濃度達300 μg/ml時可降低TNF-α分泌,但2381NS及S則對TNF-α分泌沒有顯著影響。2381EAE或2381NS對IL-10分泌沒有影響,但2381S濃度達250 μg/ml及300 μg/ml時,IL-10分泌顯著低於僅LPS組。(二)CK-EAE(200~300 μg/ml)及CK-S(150 μg/ml)僅顯著減少NO產生及iNOS表現,而CK-NS 對NO、TNF-α、IL-10分泌及iNOS表現均無顯著影響。為探討苦瓜經體內代謝後,對巨噬細胞的影響,將2381EAE加入chow diet餵食老鼠,並採集血液進行實驗,以EAE-serum或baseline-serum培養巨噬細胞,NO、TNF-α的分泌及iNOS的表現沒有顯著差異,但EAE-Serum使巨噬細胞IL-10分泌顯著高於baseline-serum。先前研究發現苦瓜成分中capric acid可抑制巨噬細胞PGE2生成,conjugated linolenic acid (CLN)可活化PPAR-a,而fenofibrate為合成的PPAR-α配位體,故以此三純化學物進行實驗,與僅用LPS處理的細胞相比,fenofibrate、capric acid及CLN有降低 NO生成量的趨勢,但未達顯著。而iNOS的表現與僅用LPS處理比較皆有減少。對LPS誘發的TNF-α生成,Fenofibrate或 CLN的加入處理並沒有顯著影響,而capric acid則顯著高於僅LPS組。各組間IL-10的分泌沒有顯著差異。本研究結果顯示,山苦瓜萃取物確實能減少巨噬細胞的發炎反應,且經由體內代謝後的血清可以增加巨噬細胞IL-10的分泌。

    Atherosclerosis is characterized by accumulation of lipids, inflammatory cell, and connective tissue within the arterial wall. It is a chronic, progressive disease with a long asymptomatic phage. Macrophages are involved in every phase of atherogenesis. Research suggests that wild bitter gourd decreases the release of pro-inflammatory mediator PGE2 and nitric oxide (NO). The aim of this study was to investigate the effect of ethyl acetate extracts(EAE)of wild bitter gourd(Momordica charantia L.), saponifiable substances of ethyl acetate(S)and nonsaponification of ethyl acetate(NS)on Lipopolysaccharide(LPS)-stimulated RAW 264.7 macrophages. The results showed(1)2381EAE, 2381NS and 2381S decreased NO production and iNOS expression in a dose-dependent manner(p<0.05).TNF-α production reduced significantly by 2381EAE(300 μg/ml).There were no significant changes in TNF-α production with 2381NS or 2381S. IL-10 production was not changed by 2381EAE or 2381NS, but was significantly decreased by 2381S(250-300 μg/ml)(p<0.05).(2)CK-EAE(200 - 300 μg/ml)and CK-S(150 μg/ml)significantly decreased NO production and iNOS expression, but CK-NS did not. TNF-α and IL-10 releases were not significantly changed by CK extracts. To test the effect of bitter gourd in vivo metabolites on macrophages, serum samples(EAE serum)obtained from ICR mice fed diet containing 1.5% 2381EAE for 1 week were used to culture RAW 264.7 macrophage. The results showed that NO and TNF-α production were not significantly different between EAE-serum and baseline-serum treatments. But, IL-10 secretion increased significantly in macrophages cultured with EAE-serum(p<0.05). Capric acid and conjugated linolenic acid (CLN), identified from bitter gourd to be a PGE2 inhibitor of macrophage, and a PPAR-alpha activator, respectively, and fenofibrate, a well-known PPAR-alpha activator, were also investigated in this model. The results showed fenofibrate, capric acid and CLN decreased nitric oxide production without statistical significance, but the expression of iNOS was down regulated by all of them. TNF-α production in cells incubated with fenofibrate decreased by 26.5% while that with capric acid increased as compared with cells incubated with LPS alone. IL-10 productions were not significantly changed by fenofibrate, capric acid or CLN. In conclusion, the wild bitter gourd EAE decreases the productions of inflammatory mediator NO and TNF, and the bio-metabolites of bitter gourd EAE increase the production of anti-inflammatory mediator IL-10 in macrophages.

    中文摘要 英文摘要 第一章 緒論-1 第二章 文獻探討 一、、巨噬細胞在動脈硬化所扮演的角色 -3 (一)單核球的recruitment及巨噬細胞的分化(differentiation of macrophage)-3 (二)泡沫細胞的形成-4 (三)巨噬細胞、Th1及Th2細胞之間的交互作用對動脈硬化發展過程的影響 -5 二、動脈硬化與細胞激素的相關性 (一)一氧化氮(Nitric oxide, NO)與誘導型一氧化氮合成酶(inducible NOS, iNOS or II)-6 (二)腫瘤壞死因子(Tumor necrosis factor-alpha, TNF-a)-7 (三)細胞激素IL-10 -7 三、脂多醣體(Lipopolysaccharide)與巨噬細胞-8 四、苦瓜介紹-9 (一)背景-9 (二)食用特色-9 (三)山苦瓜介紹-9 (四)苦瓜生理功效 -10 五、 研究目的及動機-12 第三章 實驗材料與方法 ㄧ、實驗模式-13 二、山苦瓜樣本製備 -13 (一)乙酸乙酯萃取物(EAE)-13 (二)皂化物(Saponification)及不皂化物(Non-saponification)製備過程-14 三、Fenofibrate、capric acid及CLN的配置-14 四、RAW264.7巨噬細胞株培養-14 五、細胞存活率測定(MTT assay)-14 六、一氧化氮分析-15 七、誘導型一氧化氮合成酶分析-15 (一)細胞蛋白質萃取-15 (二)電泳膠片製備-16 (三)蛋白質電泳-16 (四)蛋白質樣本轉印-16 (五)蛋白質樣本染色-17 八、細胞激素IL-10及TNF-a分析-17 九、動物血液樣本的收集-18 十、萃取物中CLN的測定-18 十ㄧ、統計方法-18 第四章 結果 第一節 山苦瓜萃取物對RAW 264.7巨噬細胞株存活率的影響-19 壹、2381萃取物-19 貳、CK萃取物-22 参、Fenofibrate、Capric acid及CLN(conjugated linolenic acid)-24 第二節 乙酸乙酯萃取物對一氧化氮、誘導型一氧化氮合成酶及細胞激素的影 響-27 ㄧ、一氧化氮的分泌與iNOS的表現-27 二、TNF-a的分泌-30 三、IL-10的分泌-32 第三節 皂化萃取物對RAW 264.7巨噬細胞株存活率的影響-34 ㄧ、一氧化氮的分泌與iNOS的表現-34 二、TNF-a的分泌-37 三、IL-10的分泌-39 第四節 不皂化萃取物對RAW 264.7巨噬細胞株存活率的影響-40 ㄧ、一氧化氮的分泌與iNOS的表現-40 二、TNF-a的分泌-43 三、IL-10的分泌-45 第五節 餵養苦瓜後的動物血清對一氧化氮、誘導型一氧化氮合成酶及細胞激 素的影響-46 ㄧ、一氧化氮的分泌與iNOS的表現-46 二、TNF-a的分泌-48 三、IL-10的分泌-48 第六節 Fenofibrate、Capric acid及CLN對一氧化氮、誘導型一氧化氮合 成酶及細胞激素的影響-50 ㄧ、一氧化氮的分泌與iNOS的表現 -50 二、TNF-a的分泌-52 三、IL-10的分泌-53 第七節 萃取物中CLN的含量-54 第五章 討論-55 第一節 山苦瓜萃取物對NO分泌及iNOS表現的影響-55 第二節 山苦瓜萃取物對TNF-a的影響-56 第三節 山苦瓜萃取物對IL-10的影響-57 第四節 山苦瓜經體內代謝之影響-57 第五節 山苦瓜的成分(capric acid及CLN)與Fenofibrate藥物-58 第六章 結論-60 參考文獻-63

    Ahmed, I., Lakhani, M. S., Gillett, M., John, A., & Raza, H. (2001). Hypotriglyceridemic and hypocholesterolemic effects of anti-diabetic Momordica charantia (karela) fruit extract in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract, 51(3), 155-161.
    Akira, S., Takeda, K., & Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol, 2(8), 675-680.
    Basch, E., Gabardi, S., & Ulbricht, C. (2003). Bitter melon (Momordica charantia): a review of efficacy and safety. Am J Health Syst Pharm, 60(4), 356-359.
    Branen, L., Hovgaard, L., Nitulescu, M., Bengtsson, E., Nilsson, J., & Jovinge, S. (2004). Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol, 24(11), 2137-2142.
    Buttery, L. D., Springall, D. R., Chester, A. H., Evans, T. J., Standfield, E. N., Parums, D. V., et al. (1996). Inducible nitric oxide synthase is present within human atherosclerotic lesions and promotes the formation and activity of peroxynitrite. Lab Invest, 75(1), 77-85.
    Caroff, M., Karibian, D., Cavaillon, J. M., & Haeffner-Cavaillon, N. (2002). Structural and functional analyses of bacterial lipopolysaccharides. Microbes Infect, 4(9), 915-926.
    Chan, M. M. (1995). Inhibition of tumor necrosis factor by curcumin, a phytochemical. Biochem Pharmacol, 49(11), 1551-1556.
    Chatelain, R., Wollenberg, A., Martin, C., Panhans-Gross, A., Bieber, T., Degitz, K., et al. (1998). IL-10 inhibits ICAM-1 expression on human Langerhans cells but not on keratinocytes, dermal endothelial cells or fibroblasts. Arch Dermatol Res, 290(9), 477-482.
    Chinetti, G., Griglio, S., Antonucci, M., Torra, I. P., Delerive, P., Majd, Z., et al. (1998). Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem, 273(40), 25573-25580.
    Coleman, J. W. (2001). Nitric oxide in immunity and inflammation. Int Immunopharmacol, 1(8), 1397-1406.
    Davies. (1990). A macro and micro view of cornary vascular insult in ischemic heart disease Circulation, 82(3 suppl), II38-II46.
    de Martin, R., Vanhove, B., Cheng, Q., Hofer, E., Csizmadia, V., Winkler, H., et al. (1993). Cytokine-inducible expression in endothelial cells of an I kappa B alpha-like gene is regulated by NF kappa B. Embo J, 12(7), 2773-2779.
    de Vera, M. E., Shapiro, R. A., Nussler, A. K., Mudgett, J. S., Simmons, R. L., Morris, S. M., Jr., et al. (1996). Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines: initial analysis of the human NOS2 promoter. Proc Natl Acad Sci U S A, 93(3), 1054-1059.
    de Waal, M. R., Abrams, J., & Bennett, B. (1991). Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med., 174, 1209-1220.
    Erridge, C., Bennett-Guerrero, E., & Poxton, I. R. (2002). Structure and function of lipopolysaccharides. Microbes Infect, 4(8), 837-851.
    Fruchart, J. C., Staels, B., & Duriez, P. (2001). The role of fibric acids in atherosclerosis. Curr Atheroscler Rep, 3(1), 83-92.
    Grover, J. K., & Yadav, S. P. (2004). Pharmacological actions and potential uses of Momordica charantia: a review. J Ethnopharmacol, 93(1), 123-132.
    Guha, M., & Mackman, N. (2001). LPS induction of gene expression in human monocytes. Cell Signal, 13(2), 85-94.
    Huang, C. J., & Wu, M. C. (2002). Differential effects of foods traditionally regarded as 'heating' and 'cooling' on prostaglandin E(2) production by a macrophage cell line. J Biomed Sci, 9(6 Pt 2), 596-606.
    Inoue, I., Shino, K., Noji, S., Awata, T., & Katayama, S. (1998). Expression of peroxisome proliferator-activated receptor alpha (PPAR alpha) in primary cultures of human vascular endothelial cells. Biochem Biophys Res Commun, 246(2), 370-374.
    Jayasooriya, A. P., Sakono, M., Yukizaki, C., Kawano, M., Yamamoto, K., & Fukuda, N. (2000). Effects of Momordica charantia powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol-enriched diets. J Ethnopharmacol, 72(1-2), 331-336.
    Kishikawa, H., Shimokama, T., & Watanabe, T. (1993). Localization of T lymphocytes and macrophages expressing IL-1, IL-2 receptor, IL-6 and TNF in human aortic intima. Role of cell-mediated immunity in human atherogenesis. Virchows Arch A Pathol Anat Histopathol, 423(6), 433-442.
    Kopp, E. B., & Medzhitov, R. (1999). The Toll-receptor family and control of innate immunity. Curr Opin Immunol, 11(1), 13-18.
    Krull, M., Klucken, A. C., Wuppermann, F. N., Fuhrmann, O., Magerl, C., Seybold, J., et al. (1999). Signal transduction pathways activated in endothelial cells following infection with Chlamydia pneumoniae. J Immunol, 162(8), 4834-4841.
    Kruth, H. S., Jones, N. L., Huang, W., Zhao, B., Ishii, I., Chang, J., et al. (2005). Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J Biol Chem, 280(3), 2352-2360.
    Lu, S. C., Chang, S. F., Chen, H. L., Chou, Y. Y., Lan, Y. H., Chuang, C. Y., et al. (2007). A novel role for Oct-2 in the lipopolysaccharide-mediated induction of resistin gene expression in RAW264.7 cells. Biochem J, 402(2), 387-395.
    Luoma, J. S., Stralin, P., Marklund, S. L., Hiltunen, T. P., Sarkioja, T., & Yla-Herttuala, S. (1998). Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins. Arterioscler Thromb Vasc Biol, 18(2), 157-167.
    Manabe, M., Takenaka, R., Nakasa, T., & Okinaka, O. (2003). Induction of anti-inflammatory responses by dietary Momordica charantia L. (bitter gourd). Biosci Biotechnol Biochem, 67(12), 2512-2517.
    Nashed, B., Yeganeh, B., HayGlass, K. T., & Moghadasian, M. H. (2005). Antiatherogenic effects of dietary plant sterols are associated with inhibition of proinflammatory cytokine production in Apo E-KO mice. J Nutr, 135(10), 2438-2444.
    Nathan, C., & Xie, Q. W. (1994). Nitric oxide synthases: roles, tolls, and controls. Cell, 78(6), 915-918.
    Park, Y. M., Won, J. H., Yun, K. J., Ryu, J. H., Han, Y. N., Choi, S. K., et al. (2006). Preventive effect of Ginkgo biloba extract (GBB) on the lipopolysaccharide-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 via suppression of nuclear factor-kappaB in RAW 264.7 cells. Biol Pharm Bull, 29(5), 985-990.
    Radomski, M. W., & Salas, E. (1995). Nitric oxide--biological mediator, modulator and factor of injury: its role in the pathogenesis of atherosclerosis. Atherosclerosis, 118 Suppl, S69-80.
    Ricote, M., Huang, J., Fajas, L., Li, A., Welch, J., Najib, J., et al. (1998). Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A, 95(13), 7614-7619.
    Rontgen, P., Sablotzki, A., Simm, A., Silber, R. E., & Czeslick, E. (2004). Effect of catecholamines on intracellular cytokine synthesis in human monocytes. Eur Cytokine Netw, 15(1), 14-23.
    Ross, R. (1999). Atherosclerosis is an inflammatory disease. Am Heart J, 138(5 Pt 2), S419-420.
    Senanayake, G. V., Maruyama, M., Shibuya, K., Sakono, M., Fukuda, N., Morishita, T., et al. (2004). The effects of bitter melon (Momordica charantia) on serum and liver triglyceride levels in rats. J Ethnopharmacol, 91(2-3), 257-262.
    Shin, K. M., Kim, Y. H., Park, W. S., Kang, I., Ha, J., Choi, J. W., et al. (2004). Inhibition of methanol extract from the fruits of Kochia scoparia on lipopolysaccharide-induced nitric oxide, prostaglandin [correction of prostagladin] E2, and tumor necrosis factor-alpha production from murine macrophage RAW 264.7 cells. Biol Pharm Bull, 27(4), 538-543.
    Skalen, K., Gustafsson, M., Rydberg, E. K., Hulten, L. M., Wiklund, O., Innerarity, T. L., et al. (2002). Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature, 417(6890), 750-754.
    Staels, B., Koenig, W., Habib, A., Merval, R., Lebret, M., Torra, I. P., et al. (1998). Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature, 393(6687), 790-793.
    Tanaka, S., Saitoh, O., Tabata, K., Matsuse, R., Kojima, K., Sugi, K., et al. (2001). Medium-chain fatty acids stimulate interleukin-8 production in Caco-2 cells with different mechanisms from long-chain fatty acids. J Gastroenterol Hepatol, 16(7), 748-754.
    Thornhill, M. H., & Haskard, D. O. (1990). IL-4 regulates endothelial cell activation by IL-1, tumor necrosis factor, or IFN-gamma. J Immunol, 145(3), 865-872.
    Williams, K. J., & Tabas, I. (2005). Lipoprotein retention--and clues for atheroma regression. Arterioscler Thromb Vasc Biol, 25(8), 1536-1540.
    Xagorari, A., Papapetropoulos, A., Mauromatis, A., Economou, M., Fotsis, T., & Roussos, C. (2001). Luteolin Inhibits an Endotoxin-Stimulated Phosphorylation Cascade and Proinflammatory Cytokine Production in Macrophages. J. Pharmacol. Exp. Ther., 296, 181-187.
    Xie, Q. (1997). A novel lipopolysaccharide-response element contributes to induction of nitric oxide synthase. J Biol Chem, 272(23), 14867-14872.
    Yadav, U. C., Moorthy, K., & Baquer, N. Z. (2005). Combined treatment of sodium orthovanadate and Momordica charantia fruit extract prevents alterations in lipid profile and lipogenic enzymes in alloxan diabetic rats. Mol Cell Biochem, 268(1-2), 111-120.
    李時珍. (1995). 本草綱目(校奌本) (1版2刷 ed.). 北京: 人民衛生出版社.
    林弼玉. (2004). 以巨噬細胞珠為模式探討苦瓜中影響前列腺素E2合成之區分物. Unpublished MD, 國立台灣師範大學, 台北.
    莊佳穎. (2004). 山苦瓜活化過氧化體增殖劑活化受器PPARs之成分分離與鑑定. 國立台灣大學, 台北.
    雲文姿. (2005). 山苦瓜與苦瓜萃出物對脂多醣誘發小鼠RAW 264.7巨噬細胞發炎反應之探討. 中山醫學大學營養科學研究所, 台中.
    詹鳳紋. (2006). 山苦瓜對apoE剔除小鼠動脈硬化與抗發炎的影響. 國立台灣師範大學.
    全和中. (2005). 苦瓜新品種『花蓮一號』之育成及其特性. 花蓮區研究彙報, 23, 79-90.
    明.李時珍. (1994). 重訂本草綱目. 台北市: 文化圖書公司.
    彭德昌. (2004). 花蓮地區山苦瓜之肥培管理. 花蓮區農業專訊, 50, 16-17.
    趙哲毅. (2003). 苦瓜活化過氧化體增殖劑活化受器及改變脂質代謝相關基因之表現. 國立台灣大學.
    劉政道與李碩朋. (1995). 苦瓜 台灣農家要覽 農作篇(二). pp.399-404.

    QR CODE