研究生: |
江哲豪 Che-Hao Chiang |
---|---|
論文名稱: |
8位元AES的FPGA設計及其五種模式之影像應用 An 8-bit FPGA Implementation of the Five-Mode AES Application in Images |
指導教授: |
黃奇武
Huang, Chi-Wu 張吉正 Chang, Chi-Jeng |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 高等加密標準 、現場可程式化閘陣列 、影像處理 |
英文關鍵詞: | AES, FPGA, Digital Image Processing |
論文種類: | 學術論文 |
相關次數: | 點閱:307 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高等加密標準(Advanced Encryption Standard, AES)硬體實現在現場可程式化閘陣列(FPGA)與特殊用途積體電路(ASIC)已經被很廣泛的討論;然而在嵌入式硬體的應用上,低產率與小面積的設計在近幾年也開始被研究。
本研究提出一個小面積的硬體電路,採用8位元的架構來實現AES-128的規格,其中使用Block RAM來完成位元組替換(SubByte)與移列轉換(ShiftRow)的動作,使用共用電路方式製作混行轉換(MixColumns);以軟體來取代硬體的金鑰擴展(KeyExpansion),來節省電路面積。透過上述所提出的方式在FPGA上所完成的實驗數據,其資源消耗為109個Slice、速度可達到94.056Mhz,是在目前文獻中8位元架構中最快的設計。
並且針對實現影像加解密的應用時所遇到的問題,本研究分別以各文獻中的方法實做,並且針對其各種不同的結果做分析,對於他們的缺點加以改良,優點予以保留,整理出一個更好的加密工作模式。
Advance Encryption Standard (AES) hardware implementation in FPGA and ASIC have been intensely discussed. However, lower throughput and area designs have also been investigated in the recent years for embedded hardware applications.
This paper presents an 8-bit AES implementation with a speed of 94.056MHz and low area of 109 slices, which is the faster 8-bit AES design among literature reports. There is a built-in Block RAM for SubByte and ShiftRow, KeyExpansion utilizing software instead of hardware.
In order to solve the problems encountered during the image encryption and decryption, this thesis tests methods from other reports, analyses results stemming therefrom, The final goal of this thesis is to improve their shortcomings and preserve their strengths, so as to come up with a better encryption and decryption operation mode.
[1] NIST. Announcing the advanced encryption standard (AES), FIPS 197. Technical report, National Institute of Standards and Technology, November 2001.
[2] William Stallings, Cryptography and Network Security: Principles and Practice. Prentice Hall, 1999.
[3] Wail S. Elkilani, Hatem M. Abdul-Kader “Performance of encryption techniques for real time video streaming , ” Networking and Media Convergence, 2009. ICNM 2009, Cairo, March 2009, pp.130-134.
[4] Tim Good, “Very Small FPGA Application-Specific Instruction Processor for AES,” IEEE Trans. Circuits and Systems—I: Regular Papers, vol. 53, no. 7, July 2006.
[5] Tim Good and M. Benaissa, “Pipelined AES on FPGA with support for feedback modes (in a multi-channel environment),” in the Institution of Engineering and Technology, vol. 1, no. 1, pp. 1–10, April 2007.
[6] Chi-Jeng Chang, and Chi-Wu Huang, “8-bit AES Implementation in FPGA by Multiplexing 32-bit AES Operation,” in the Data, Privacy, and E-Commerce, 2007., Chengdu, Nov. 2007 ,pp.505-507.
[7] Chi-Jeng Chang, and Chi-Wu Huang, “8-bit AES FPGA Implementation using Block RAM,” Industrial Electronics Society, 2007. IECON 2007., Taipei, Nov. 2007, pp.2654-2659.
[8] Chi-Jeng Chang, and Chi-Wu Huang, Kuo-Huang Chang, Yi-Cheng Chen and Chung-Cheng Hsieh “High Throughput 32-bit AES Implementation in FPGA,” IEEE Asia Pacific Conference on Circuits and Systems, MACAO, December 2008, pp. 1806 – 1809.
[9] Kuo-Huang Chang, Yi-Cheng Chen, Chung-Cheng Hsieh, Chi-Wu Huang, Chi-Jeng Chang, “Embedded a Low Area 32-bit AES for Image Encryption/Decryption Application.” Circuits and Systems, 2009. ISCAS 2009. , Taipei, May. 2009, pp 1922 – 1925.
[10] X. Zhang and K. K.Parhi “High Speed VLSI Architectures for the AES Algorithm,” IEEE Trans. VLSI Systems, vol. 12, no. 9, September 2004.
[11] J. Wolkerstorfer, E. Oswald, M, and Lamberger, “An ASIC Implementation of the AES SBoxes,” CT-RSA 2002, LNCS 2271, pp-67-78, 2002.
[12] Hannes Brunner, Andreas Curiger, and Max Hofstetter, “”On Computing Multiplicative Inverses in GF (2m),” IEEE Trans. Computers, vol. 42, no. 8, August 1993.
[13] Jyh-Huei Guo and Chin-Liang Wang,” Systolic Array Implementation of Euclids Algorithm for Inversion and Division in GF (2m),” IEEE Trans. Computers, vol. 47, no. 10, October 1998.
[14] Chih-Peng Fan, and Jun-Kui Hwang “Implementations of High Throughput Sequential and Fully Pipelined AES Processors on FPGA,” In Proc. International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, Nov.28-Dec.1, 2007, pp.353 -356.
[15] Pawel Chodowiec and Kris Gaj, “Very Compact FPGA Implementation of the AES Algorithm”, Cryptographic Hardware and Embedded Systems, vol. 2779, pp. 319–333, September 2003.
[16] Ricardo Chaves, Georgi Kuzmanov, Stamatis Vassiliadis, and Leonel Sousa, “Reconfigurable Memory Based AES Co-Processor,” International Parallel and Distributed Processing Symposium, Rhodes Island, April 2006, pp.8.
[17] Chi-Wu Huang, Chi-Jeng Chang, Mao-Yuan Lin, and Hung-Yun Tai, “Compact FPGA Implementation of 32-bits AES Algorithm Using Block RAM,” TECON 2007, Taipei, Oct.30-Nov.2 2007, pp.1–4.
[18] Chi-Wu Huang, Chi-Jeng Chang, Mao-Yuan Lin, and Hung-Yun Tai, “The FPGA Implementation of 128-bits AES Algorithm Based on Four 32-bits Parallel Operation,” ISDPE 2007, Chengdu, Nov. 2007, pp.462–464.
[19] Rafael C. Gonzalez and Richard E. Woods, “Digital Image Processing, 2/E,” Prentice Hall, 2001.
[20] Morris Dworkin, “Recommendation for Block Cipher Modes of Operation” NIST Special Publication 800-38A 2001 Edition.