簡易檢索 / 詳目顯示

研究生: 江哲豪
Che-Hao Chiang
論文名稱: 8位元AES的FPGA設計及其五種模式之影像應用
An 8-bit FPGA Implementation of the Five-Mode AES Application in Images
指導教授: 黃奇武
Huang, Chi-Wu
張吉正
Chang, Chi-Jeng
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 68
中文關鍵詞: 高等加密標準現場可程式化閘陣列影像處理
英文關鍵詞: AES, FPGA, Digital Image Processing
論文種類: 學術論文
相關次數: 點閱:307下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

高等加密標準(Advanced Encryption Standard, AES)硬體實現在現場可程式化閘陣列(FPGA)與特殊用途積體電路(ASIC)已經被很廣泛的討論;然而在嵌入式硬體的應用上,低產率與小面積的設計在近幾年也開始被研究。
  本研究提出一個小面積的硬體電路,採用8位元的架構來實現AES-128的規格,其中使用Block RAM來完成位元組替換(SubByte)與移列轉換(ShiftRow)的動作,使用共用電路方式製作混行轉換(MixColumns);以軟體來取代硬體的金鑰擴展(KeyExpansion),來節省電路面積。透過上述所提出的方式在FPGA上所完成的實驗數據,其資源消耗為109個Slice、速度可達到94.056Mhz,是在目前文獻中8位元架構中最快的設計。
  並且針對實現影像加解密的應用時所遇到的問題,本研究分別以各文獻中的方法實做,並且針對其各種不同的結果做分析,對於他們的缺點加以改良,優點予以保留,整理出一個更好的加密工作模式。

Advance Encryption Standard (AES) hardware implementation in FPGA and ASIC have been intensely discussed. However, lower throughput and area designs have also been investigated in the recent years for embedded hardware applications.
  This paper presents an 8-bit AES implementation with a speed of 94.056MHz and low area of 109 slices, which is the faster 8-bit AES design among literature reports. There is a built-in Block RAM for SubByte and ShiftRow, KeyExpansion utilizing software instead of hardware.
  In order to solve the problems encountered during the image encryption and decryption, this thesis tests methods from other reports, analyses results stemming therefrom, The final goal of this thesis is to improve their shortcomings and preserve their strengths, so as to come up with a better encryption and decryption operation mode.

摘  要 i ABSTRACT ii 誌  謝 iii 目  錄 iv 表 目 錄 vii 圖 目 錄 viii 第一章  緒論 1 1.1  研究背景 1 1.2  研究動機 4 1.3  研究目的 4 1.4  研究步驟 5 第二章  演算法及文獻探討 6 2.1  高等加密標準演算法介紹 6 2.1.1 演算法流程介紹 6 2.1.2 位元組替換與反位元組替換 8 2.1.3 移列轉換與反移列轉換 10 2.1.4 混行運算與反混行運算 11 2.1.5 回合金鑰加法運算 12 2.2  文獻探討 13 2.2.1 軟硬體結合處理器實現8位元AES架構論文 13 2.2.2 硬體實現8位元AES架構論文 15 2.2.3 32位元AES與其加解密應用於影像處理論文 16 2.2.4 使用運算法實做SubByte單元之AES架構論文 18 2.2.5 大面積高速之AES架構設計論文 19 2.2.6 使用Block RAM節省FPGA面積之AES設計論文 21 第三章  8位元AES硬體架構 23 3.1  小面積8位元AES電路架構 23 3.2  SubByte/InvSubByte架構設計 25 3.3  ShiftRow/InvShiftRow架構設計 26 3.4  MixColumns/InvMixColumns架構設計 28 3.5  軟體驗證與圖形分析 29 3.5.1 軟體模擬驗證與分析 29 3.5.2 軟體圖片加密應用與分析 32 3.6  硬體AES電路驗證 33 第四章  圖像加解密分析 37 4.1  三原色光模型介紹 37 4.2  亂度介紹 38 4.3  直方圖介紹 39 4.4  加解密工作模式 40 4.4.1 ECB模式模擬與分析 41 4.4.2 CTR模式模擬與分析 45 4.4.3 CBC模式模擬與分析 48 4.4.4 CFB模式模擬與分析 51 4.4.5 OFB模式模擬與分析 54 4.5  Modified CTR模式模擬與分析 57 第五章  實驗結果分析與比較 60 5.1 8位元AES電路效能比較 60 5.2 不同工作模式圖型比較與分析 62 第六章  結論與未來展望 64 參考文獻 65 自  傳 68 學術成就 68

[1] NIST. Announcing the advanced encryption standard (AES), FIPS 197. Technical report, National Institute of Standards and Technology, November 2001.
[2] William Stallings, Cryptography and Network Security: Principles and Practice. Prentice Hall, 1999.
[3] Wail S. Elkilani, Hatem M. Abdul-Kader “Performance of encryption techniques for real time video streaming , ” Networking and Media Convergence, 2009. ICNM 2009, Cairo, March 2009, pp.130-134.
[4] Tim Good, “Very Small FPGA Application-Specific Instruction Processor for AES,” IEEE Trans. Circuits and Systems—I: Regular Papers, vol. 53, no. 7, July 2006.
[5] Tim Good and M. Benaissa, “Pipelined AES on FPGA with support for feedback modes (in a multi-channel environment),” in the Institution of Engineering and Technology, vol. 1, no. 1, pp. 1–10, April 2007.
[6] Chi-Jeng Chang, and Chi-Wu Huang, “8-bit AES Implementation in FPGA by Multiplexing 32-bit AES Operation,” in the Data, Privacy, and E-Commerce, 2007., Chengdu, Nov. 2007 ,pp.505-507.
[7] Chi-Jeng Chang, and Chi-Wu Huang, “8-bit AES FPGA Implementation using Block RAM,” Industrial Electronics Society, 2007. IECON 2007., Taipei, Nov. 2007, pp.2654-2659.
[8] Chi-Jeng Chang, and Chi-Wu Huang, Kuo-Huang Chang, Yi-Cheng Chen and Chung-Cheng Hsieh “High Throughput 32-bit AES Implementation in FPGA,” IEEE Asia Pacific Conference on Circuits and Systems, MACAO, December 2008, pp. 1806 – 1809.
[9] Kuo-Huang Chang, Yi-Cheng Chen, Chung-Cheng Hsieh, Chi-Wu Huang, Chi-Jeng Chang, “Embedded a Low Area 32-bit AES for Image Encryption/Decryption Application.” Circuits and Systems, 2009. ISCAS 2009. , Taipei, May. 2009, pp 1922 – 1925.
[10] X. Zhang and K. K.Parhi “High Speed VLSI Architectures for the AES Algorithm,” IEEE Trans. VLSI Systems, vol. 12, no. 9, September 2004.
[11] J. Wolkerstorfer, E. Oswald, M, and Lamberger, “An ASIC Implementation of the AES SBoxes,” CT-RSA 2002, LNCS 2271, pp-67-78, 2002.
[12] Hannes Brunner, Andreas Curiger, and Max Hofstetter, “”On Computing Multiplicative Inverses in GF (2m),” IEEE Trans. Computers, vol. 42, no. 8, August 1993.
[13] Jyh-Huei Guo and Chin-Liang Wang,” Systolic Array Implementation of Euclids Algorithm for Inversion and Division in GF (2m),” IEEE Trans. Computers, vol. 47, no. 10, October 1998.
[14] Chih-Peng Fan, and Jun-Kui Hwang “Implementations of High Throughput Sequential and Fully Pipelined AES Processors on FPGA,” In Proc. International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, Nov.28-Dec.1, 2007, pp.353 -356.
[15] Pawel Chodowiec and Kris Gaj, “Very Compact FPGA Implementation of the AES Algorithm”, Cryptographic Hardware and Embedded Systems, vol. 2779, pp. 319–333, September 2003.
[16] Ricardo Chaves, Georgi Kuzmanov, Stamatis Vassiliadis, and Leonel Sousa, “Reconfigurable Memory Based AES Co-Processor,” International Parallel and Distributed Processing Symposium, Rhodes Island, April 2006, pp.8.
[17] Chi-Wu Huang, Chi-Jeng Chang, Mao-Yuan Lin, and Hung-Yun Tai, “Compact FPGA Implementation of 32-bits AES Algorithm Using Block RAM,” TECON 2007, Taipei, Oct.30-Nov.2 2007, pp.1–4.
[18] Chi-Wu Huang, Chi-Jeng Chang, Mao-Yuan Lin, and Hung-Yun Tai, “The FPGA Implementation of 128-bits AES Algorithm Based on Four 32-bits Parallel Operation,” ISDPE 2007, Chengdu, Nov. 2007, pp.462–464.
[19] Rafael C. Gonzalez and Richard E. Woods, “Digital Image Processing, 2/E,” Prentice Hall, 2001.
[20] Morris Dworkin, “Recommendation for Block Cipher Modes of Operation” NIST Special Publication 800-38A 2001 Edition.

下載圖示
QR CODE