簡易檢索 / 詳目顯示

研究生: 江俊源
Chiang, Chun-Yuan
論文名稱: 單次不同強度阻力運動對壓力荷爾蒙及免疫細胞數量之影響
Effects of acute resistance exercise with different intensity on stress hormones and immune cells
指導教授: 徐孟達
Hsu, Mong-Da
口試委員: 陳玉英
Chen, Yu Ying
劉宏文
Liu, Hung-Wen
口試日期: 2021/07/13
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 37
中文關鍵詞: 皮質固醇白血球淋巴球免疫空窗期運動量
英文關鍵詞: cortisol, white blood cells, lymphocytes, immune open window, exercise load
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202100934
論文種類: 學術論文
相關次數: 點閱:229下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

前言:先前研究表示單次阻力運動可能引起壓力荷爾蒙的反應,進而造成免疫系統 的急性變化。由於許多研究探討不同阻力運動強度對於免疫細胞數量影響上,僅使用不 同強度對應的重複次數,卻忽略了訓練量是強度與次數的乘積,因此,這將造成不同強 度訓練量上有顯著差異,進而導致研究結果不一致的現象。目的:探討相同訓練量下不 同強度阻力運動對壓力荷爾蒙及免疫細胞數量之影響。方法:招募 11 位無阻力運動習 慣的健康男性,以平衡次序法執行兩種不同方案的阻力運動以及不運動處理,受試者在 史密斯機上進行四種動作的阻力運動,其強度分別為高強度處理(80%-8RM 8 下 4 組, hight intensity trial: HIT)與低強度處理(45%-8RM 15 下 4 組, low intensity trial: LIT), 組間休息皆為 90 秒。所有受試者在運動前、運動後立即、運動後 30 分及運動後 60 分 鐘採血,以進行乳酸、皮質固醇及免疫細胞數量分析。所得資料以重複量數二因子變異 數法進行統計分析,以考驗受試者在不同組別之差異。結果:(一)兩種運動處理後立即 採血的白血球總量及淋巴球數量顯著高於無運動處理 (p<.05),兩運動組組間則是無顯 著差異 (p > .05);在運動後立即高強度處理的嗜中性球數量顯著高於無運動處理 (p < .05)。(二)皮質固醇則是在兩個運動處理結束後 30 分與 60 分皆顯著高於無運動處理 (p < .05)。結論:從事單次不同強度的阻力運動不會造成運動者體內壓力荷爾蒙與免疫 細胞數量有所差異,但在運動後恢復期會有短暫免疫空窗期產生,因此,建議從事單次 阻力運動後應多注意相關保養,以避免身體被感染的機會。

Introduction: Previous studies have shown that acute resistance exercise may cause dramatic change in the immune system, may be that exercise causes a response to stress hormones. Since many studies have explored the impact of different resistance exercise intensities on the number of immune cells, they only use the number of repetitions corresponding to different intensities, but ignore that the amount of training is the product of intensity and frequency. Therefore, this will cause significant differences in training volume at different intensities, which will lead to inconsistent research results. Purpose: To explore the effects of equal-volume resistance training with different intensities on stress hormones and the number of immune cells. Methods: Eleven healthy men without resistance exercise habit were recruited to perform two different intensity of resistance exercises and non-exercise control trial (control trial: CT) in the way of counter-balance order method. Subjects performed four types of resistance exercises on the Smith machine, the strengths of which were high-intensity trial (4 sets at 85%-8RM *8, hight intensity trial: HIT) and low-intensity trial (4 sets at 45%-8RM *15, low intensity trial: LIT), the rest between set was 90 seconds. Blood samples were collected at pre--exercise (PRE), post- exercise immediately (POST0), post-exercise 30 minutes (POST30), and post-exercise 60 minutes (POST60) for analysis of lactic acid, cortisol and immune cell numbers. The data were analyzed by repeated measures Two-way ANOVA. Results: 1. The total number of white blood cells (WBCs) and lymphocytes (LYMs) were significantly higher in the HIT and LIT than CT (p < .05) at POST0. But WBCs and LYMs were no significant difference between HIT and LIT (p > .05). The number of neutrophils (NEUs) was significantly higher in HIT than in CT (p < .05). 2.Cortisol was significantly higher in HIT and LIT than CT at POST30 and POST60 (p < .05). Conclusions: Acute resistance exercise with different intensity will not cause the difference on stress hormones and the number of immune cells, but there will be a short immune window in the recovery period after exercise. It’s suggested to pay more attention to relevant maintenance after acute resistance exercise to avoid the chance of infection.

謝辭i 中文摘要ii 英文摘要iii 目次v 表次viii 圖次viii 第壹章 緒論1 第一節 研究背景1 第二節 研究目的3 第三節 研究假設3 第四節 名詞操作性定義3 第五節 研究範圍與限制4 第六節 研究重要性4 第貳章 文獻探討5 第一節 單次阻力運動對壓力荷爾蒙的影響5 第二節 壓力荷爾蒙對免疫細胞數量的影響7 第三節 單次阻力運動對於免疫細胞數量的影響8 第四節 本章總結10 第參章 研究方法11 第一節 研究對象11 第二節 實驗時間與地點11 第三節 實驗流程11 第四節 測量工具與方法13 第五節 資料處理及統計分析15 第肆章 實驗結果16 第一節 受試者基本資料16 第二節 阻力運動組的訓練總量16 第三節 不同處理後血液指標的變化情形17 第伍章 討論24 第一節 單次不同強度阻力運動引起壓力荷爾蒙之影響24 第二節 單次不同強度阻力運動與免疫細胞數量之影響27 第三節 結論30 參考文獻31 附錄34 附錄一 受試者同意書34 附錄二 最大肌力測驗36

Ashwell, J. D., Lu, F. W., & Vacchio, M. S. (2000). Glucocorticoids in T cell development and function. Annual review of immunology, 18(1), 309-345.

Bermon, S., Philip, P., Candito, M., Ferrari, P., & Dolisi, C. (2001). Effects of strength exercise and training on the natural killer cell counts in elderly humans. Journal of sports medicine and physical fitness, 41(2), 196.

Campbell, J. P., & Turner, J. E. (2018). Debunking the myth of exercise-induced immune suppression: redefining the impact of exercise on immunological health across the lifespan. Frontiers in immunology, 9, 648.
Charmandari, E., Tsigos, C., & Chrousos, G. (2005). Endocrinology of the stress response. Annu. Rev. Physiol., 67, 259-284.

Crewther, B., Cronin, J., Keogh, J., & Cook, C. (2008). The salivary testosterone and cortisol response to three loading schemes. The Journal of Strength & Conditioning Research, 22(1), 250-255.

Dimitrov, S., Lange, T., & Born, J. (2010). Selective mobilization of cytotoxic leukocytes by epinephrine. The journal of immunology, 184(1), 503-511.

Fay, M. E., Myers, D. R., Kumar, A., Turbyfield, C. T., Byler, R., Crawford, K., . . . Sakurai, Y. (2016). Cellular softening mediates leukocyte demargination and trafficking, thereby increasing clinical blood counts. Proceedings of the National Academy of Sciences, 113(8), 1987-1992.

Freidenreich, D. J., & Volek, J. S. (2012). Immune responses to resistance exercise. Exercise immunology review, 18.

Freidenreich, D. J., & Volek, J. S. (2012). Immune responses to resistance exercise. Exercise immunology review, 18.

Garrett, W. E., & Kirkendall, D. T. (2000). Exercise and sport science: Lippincott Williams & Wilkins.

Ghanbari-Niaki, A., Saghebjoo, M., Rashid-Lamir, A., Fathi, R., & Kraemer, R. R. (2010). Acute circuit-resistance exercise increases expression of lymphocyte agouti-related protein in young women. Experimental Biology and Medicine, 235(3), 326-334.

Ghanbari-Niaki, A., Saghebjoo, M., Rashid-Lamir, A., Fathi, R., & Kraemer, R. R. (2010). Acute circuit-resistance exercise increases expression of lymphocyte agouti-related protein in young women. Experimental Biology and Medicine, 235(3), 326-334.

Ghanbari-Niaki, A., & Tayebi, S. M. (2013). Effects of a low intensity circuit resistance exercise session on some hematological parameters of male collage students. Annals of Applied Sport Science, 1(1), 6-11.

Hill, E., Zack, E., Battaglini, C., Viru, M., Viru, A., & Hackney, A. (2008). Exercise and circulating cortisol levels: the intensity threshold effect. Journal of endocrinological investigation, 31(7), 587-591.

Hoeger, W. W., Hopkinsº, D. R., Barette, S. L., & Hale, D. F. (1990). Relationship between Repetitions and Selected Percentages of One Repetition Maximum: A Comparison between. Journal of Applied Sport Science Research, 4(2), 48.

Ihalainen, J., Walker, S., Paulsen, G., Häkkinen, K., Kraemer, W. J., Hämäläinen, M., . . . Mero, A. A. (2014). Acute leukocyte, cytokine and adipocytokine responses to maximal and hypertrophic resistance exercise bouts. European Journal of Applied Physiology, 114(12), 2607-2616.

João, E., Vanclay, F., & den Broeder, L. (2011). Emphasising enhancement in all forms of impact assessment: introduction to a special issue. Impact Assessment and Project Appraisal, 29(3), 170-180.

Kirschbaum, C., & Hellhammer, D. H. (1994). Salivary cortisol in psychoneuroendocrine research: recent developments and applications. Psychoneuroendocrinology, 19(4), 313-333.

Knuiman, P., Hopman, M. T., & Mensink, M. (2015). Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise. Nutrition & metabolism, 12(1), 1-11.

Kraemer, W. J., Clemson, A., Triplett, N. T., Bush, J. A., Newton, R. U., & Lynch, J. M. (1996). The effects of plasma cortisol elevation on total and differential leukocyte counts in response to heavy-resistance exercise. European journal of applied physiology and occupational physiology, 73(1), 93-97.

Luger, A., Deuster, P. A., Kyle, S. B., Gallucci, W. T., Montgomery, L. C., Gold, P. W., . . . Chrousos, G. P. (1987). Acute hypothalamic–pituitary–adrenal responses to the stress of treadmill exercise. New England Journal of Medicine, 316(21), 1309-1315.

Mayhew, D. L., Thyfault, J. P., & Koch, A. J. (2005). Rest-interval length affects leukocyte levels during heavy resistance exercise. The Journal of Strength & Conditioning Research, 19(1), 16-22.

Miles, M. P., Kraemer, W., Nindl, B., Grove, D., Leach, S., Dohi, K., . . . Mastro, A. (2003). Strength, workload, anaerobic intensity and the immune response to resistance exercise in women. Acta physiologica scandinavica, 178(2), 155-163.

Paredes, S., & Ribeiro, L. (2014). Cortisol: the villain in Metabolic Syndrome? Revista da Associação Médica Brasileira, 60, 84-92.

Peake, J., Gatta, P. D., & Cameron-Smith, D. (2010). Aging and its effects on inflammation in skeletal muscle at rest and following exercise-induced muscle injury. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 298(6), R1485-R1495.

Pedersen, B., Rohde, T., & Zacho, M. (1996). Immunity in athletes. The Journal of sports medicine and physical fitness, 36(4), 236-245.

Ramel, A., Wagner, K., & Elmadfa, I. (2004). Correlations between plasma noradrenaline concentrations, antioxidants, and neutrophil counts after submaximal resistance exercise in men. British journal of sports medicine, 38(5), e22-e22.

Ramel, A., Wagner, K.-H., & Elmadfa, I. (2003). Acute impact of submaximal resistance exercise on immunological and hormonal parameters in young men. Journal of Sports Science, 21(12), 1001-1008.

Ratamess Jr, N. A. (2003). Effects of heavy resistance exercise volume on post-exercise androgen receptor content in resistance-trained men: University of Connecticut.

Ratamess, N. A., Kraemer, W. J., Volek, J. S., Maresh, C. M., VanHeest, J. L., Sharman, M. J., . . . Silvestre, R. (2005). Androgen receptor content following heavy resistance exercise in men. The Journal of steroid biochemistry and molecular biology, 93(1), 35-42.

Rudolph, D. L., & McAuley, E. (1998). Cortisol and affective responses to exercise. Journal of sports sciences, 16(2), 121-128.

Smilios, I., Pilianidis, T., Karamouzis, M., & Tokmakidis, S. P. (2003). Hormonal responses after various resistance exercise protocols. Medicine & Science in Sports & Exercise, 35(4), 644-654.

Suzuki, K., Totsuka, M., Nakaji, S., Yamada, M., Kudoh, S., Liu, Q., . . . Sato, K. (1999). Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage. Journal of applied physiology, 87(4), 1360-1367.

Szlezak, A. M., Szlezak, S. L., Keane, J., Tajouri, L., & Minahan, C. (2016). Establishing a dose-response relationship between acute resistance-exercise and the immune system: Protocol for a systematic review. Immunology letters, 180, 54-65.

Szlezak, A. M., Tajouri, L., Keane, J., Szlezak, S. L., & Minahan, C. (2016). Isometric thumb exertion induces B cell and T cell lymphocytosis in trained and untrained males: physical aptitude determines response profiles. International Journal of Kinesiology and Sports Science, 4(1), 55-66.

Thornton, M. K., & Potteiger, J. A. (2002). Effects of resistance exercise bouts of different intensities but equal work on EPOC. Medicine & Science in Sports & Exercise, 34(4), 715-722.

Uchida, M. C., Crewther, B. T., Ugrinowitsch, C., Bacurau, R. F. P., Moriscot, A. S., & Aoki, M. S. (2009). Hormonal responses to different resistance exercise schemes of similar total volume. The Journal of Strength & Conditioning Research, 23(7), 2003-2008.

Vegiopoulos, A., & Herzig, S. (2007). Glucocorticoids, metabolism and metabolic diseases. Molecular and cellular endocrinology, 275(1-2), 43-61.

Wittert, G. A., Livesey, J. H., Espiner, E. A., & Donald, R. A. (1996). Adaptation of the hypothalamopituitary adrenal axis to chronic exercise stress in humans. Medicine and science in sports and exercise, 28(8), 1015-1019.

下載圖示
QR CODE