簡易檢索 / 詳目顯示

研究生: 簡伯丞
Chien, Po-Cheng
論文名稱: 以第一原理計算探討非均相催化反應:甲醇和乙醇氧化反應
First-Principles Calculations of Heterogeneous Catalytic Reaction: Methanol and Ethanol Oxidation Reaction
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 88
中文關鍵詞: 密度泛函理論計算甲醇氧化反應乙醇氧化反應催化劑 Pt-MSnO催化劑 Pt-SnO-M
英文關鍵詞: Density functional theory, Methanol oxidation reaction, Ethanol oxidation reaction, Catalyst Pt-MSnO, Catalyst Pt-SnO-M
DOI URL: http://doi.org/10.6345/NTNU202000610
論文種類: 學術論文
相關次數: 點閱:74下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文運用密度泛函理論(DFT)計算來探討醇類的非均相催化反應,包括燃料電池當中的發生在陽極的甲醇氧化反應,以及乙醇氧化反應。
    Pt-oxide 催化劑為 Pt 表面吸附氧化物質(oxide),表面上的 oxide 可以幫助乙醇脫氫。由先前的研究得知 Pt-AuO 和 Pt-SnO 分別具有優異的 EOR 催化活性和穩定性。透過 DFT 計算,提出 Pt-AuSnO 三元金屬催化劑,同時具備 Pt-AuO 和 Pt-SnO 的優點。計算結果顯示,Pt-AuSnO 催化劑具有良好的 CO 耐受性,並且確實承繼 Pt-AuO 和 Pt-SnO 優異的 EOR 活性和穩定性。
    由上章得知,Pt-AuSnO 表面具有比 Pt-SnO 表面優異的 EOR 催化活性。因此,本章想進一步了解身為與 Au 同族的金屬 Cu 和 Ag 是否都具備比 Pt-SnO 二元金屬催化劑還要優異的醇類催化活性。實驗證實 Pt-AgSnO 和 Pt-AuSnO 在 MOR、EOR 上都具有優於 Pt-SnO 的催化活性,而 Pt-CuSnO 則是只有 EOR 優於 Pt-SnO,MOR 則否。經過 DFT 計算,我們以 Pt-MSnO、Pt-SnO-M 兩種分別代表 M 金屬間接影響和直接影響催化反應的模型,比較兩種模型對MOR及EOR的影響。結果顯示,Pt-MSnO 和 Pt-SnO-M 分別展現不同的催化活性,因此認為不同金屬可能傾向不同的構型,Cu 傾向 Pt-SnO-M 構型,Ag、Au 則傾向 Pt-MSnO 構型。而在 Pt-SnO-Cu 上確實觀察到其 MOR 活性差於 Pt-SnO 的情況。藉由分析表面 CO 吸附能,發現 CO 毒化現象極有可能是造成 Pt-CuSnO 的 MOR 反應活性差於 Pt-SnO 的原因。

    Direct alcohol fuel cells can effectively utilize alcohols to electricity are considered as power decives in the future. Our present study focused on examining electrochemical performance and mechanism of Pt-oxide catalysts, in which oxides are decorated on Pt, as anodic materials for the promising direct methanol and ethanol fuel cells (DMFC and DEFC). Initially, we systematically investigated the ethanol oxidation reaciton (EOR) for DEFC application on various bimetallic Pt-oxide (oxide = CoO, RhO, IrO, NiO, PdO, O, CuO, AuO and SnO) and found that Pt-AuO and Pt-SnO demonstrated the best activity and stability, respectively, among those catalysts. The enhanced activity and stability are attributable to that the densely charge AuO assists the key dehydrogenation step in EOR and strongly adsorbed SnO avoids the destruction of Pt surface during the electrochemical reaction. Combined the two excellent catalysts, we designed the ternary Pt-AuSnO and found the catalysts has the best EOR performance. Furthermore, we extented our ternary catalysts with other coinage metals of Pt-CuSnO, Pt-AgSnO and Pt-AuSnO on both methanol oxidation reaction (MOR) and EOR. Our results showed that Pt-AgSnO have the excellent performance as that for Pt-AuSnO, but with lower costs. Pt-CuSnO, on the other hand, only good for EOR. We create two models Pt-MSnO and Pt-SnO-M (M=Cu, Ag, Au) to represent the indirect and direct effect of M metals on the catalytic reactions and compare the effects of the two models on MOR and EOR. The results reveal that Pt-MSnO and Pt-SnO-M exhibit different catalytic activity on MOR and EOR. Therefore, it’s believed that these M metals may tend to different models. The Cu tend to model Pt-SnO-M, while Ag and Au tend to model Pt-MSnO. Analyst adsorption of CO on surface which demonstrate poor performance of Pt-CuSnO for MOR might attributable to the severe CO poisoning.

    謝誌 i 摘要 ii Abstract iii 目錄 v 圖表目錄 viii 第一章 緒論 1 1-1 前言 1 1-2 直接醇類燃料電池 3 1-3 甲醇氧化反應 5 1-4 乙醇氧化反應 6 1-5 催化金屬進程 7 第二章 理論計算原理 9 2-1 密度泛函理論 (Density Functional Theory) 9 2-1-1 Hohenberg-Kohn 定理 10 2-1-2 Kohn-Sham 方程式 11 2-1-3 交換關聯函數 12 2-2 固態材料計算理論基礎 13 2-2-1 Basis set 13 2-2-2 贋勢 (Pseudopotential) 13 2-2-3 布洛赫定理 (Blochʼs Theorem) 14 2-2-4 自洽過程 (Self-consistent calculation) 15 2-3 系統與軟體 16 2-3-1 VASP計算設定 16 2-3-2 計算系統 18 第三章 Pt-AuSnO在乙醇氧化反應上的機制探討 19 3-1 緒論 19 3-1-1 研究動機 19 3-1-2 Pt-AuO之乙醇氧化反應活性驗證 20 3-1-3 Pt-SnO乙醇氧化反應穩定性驗證 23 3-2 結果與討論 26 3-2-1 Pt-oxide表面建立 26 3-2-2 Pt-oxide於乙醇氧化反應上之反應途徑 28 3-2-3 Pt-oxide吸附物吸附能比較 29 3-2-4 Pt-AuSnO反應性探討 33 3-2-5 Pt-AuSnO 之表面鍵結分析 45 3-2-6 各Pt-oxide表面毒化分析 47 第四章 Pt-MSnO ( M = Cu, Ag, Au ) 與 Pt-SnO 之MOR、EOR 探討 49 4-1 緒論 49 4-1-1 研究動機 49 4-2 結果與討論 51 4-2-1 Pt-MSnO 與 Pt-SnO 表面模型建立 51 4-2-2 Pt-MSnO、Pt-SnO-M表面於MOR、EOR上之反應途徑 54 4-2-3 Pt-MSnO、Pt-SnO-M 之吸附物吸附能 55 4-2-4 Pt-MSnO、Pt-SnO-M之反應性探討 63 4-2-5 Pt-SnO、Pt-MSnO、Pt-SnO-M 表面毒化分析 72 第五章 結論 73 參考文獻 75 附錄 79 6-1 OSRE 於原子氧與分子水共吸附之 Rh ( 111 ) 表面 79 6-1-1 Rh ( 111 ) 模型 80 6-1-2 實驗數據 80 6-1-3 結果與討論 83 6-1-4 結論 88

    1. Crisafulli, R., Antoniassi, R., Neto, A.O., Spinacé, E., Acid-treated PtSn/C and PtSnCu/C electrocatalysts for ethanol electro-oxidation. International Journal of Hydrogen Energy 2014, 39(11), 5671-5677.
    2. Corradini, P.G., Perez, J., Activity, mechanism, and short-term stability evaluation of PtSn-rare earth/C electrocatalysts for the ethanol oxidation reaction. Journal of Solid State Electrochemistry 2018, 22(5), 1525-1537.
    3. Chen, Y., Wang, J., Meng, X., Zhong, Y., Li, R., Sun, X., Ye, S., Knights, S., Atomic layer deposition assisted Pt-SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells. International Journal of Hydrogen Energy 2011, 36(17), 11085-11092.
    4. Engelbrekt, C., Šešelj, N., Poreddy, R., Riisager, A., Ulstrup, J., Zhang, J., Atomically thin Pt shells on Au nanoparticle cores: facile synthesis and efficient synergetic catalysis. Journal of Materials Chemistry A 2016, 4(9), 3278-3286.
    5. Magalhães, M.M., Colmati, F., Carbon-supported PtSnCu, PtCu and PtSn electrocatalysts for ethanol oxidation in acid media. Journal of the Brazilian Chemical Society 2014, 25(8), 1317-1325.
    6. Michel, C., Auneau, F., Delbecq, F., Sautet, P., C–H versus O–H bond dissociation for alcohols on a Rh (111) surface: a strong assistance from hydrogen bonded neighbors. ACS Catalysis 2011, 1(10), 1430-1440.
    7. Lu, X., Deng, Z., Wei, S., Zhu, Q., Wang, W., Guo, W., Wu, C.-M.L., CO tolerance of a Pt 3 Sn (111) catalyst in ethanol decomposition. Catalysis Science & Technology 2015, 5(6), 3246-3258.
    8. Almeida, T., Van Wassen, A., VanDover, R., De Andrade, A., Abruña, H., Combinatorial PtSnM (M= Fe, Ni, Ru and Pd) nanoparticle catalyst library toward ethanol electrooxidation. Journal of Power Sources 2015, 284, 623-630.
    9. Pozzo, M., Carlini, G., Rosei, R., Alfè, D., Comparative study of water dissociation on Rh (111) and Ni (111) studied with first principles calculations. The Journal of Chemical Physics 2007, 126(16), 164706.
    10. Kim, S.-M., Jo, Y.-G., Lee, S.-Y., The composition-controlled synthesis of Pt-Ag bimetallic nanochains for catalytic methanol oxidation. Electrochimica Acta 2015, 174, 1244-1252.
    11. Kim, K., Kim, K.L., Shin, K.S., Coreduced Pt/Ag alloy nanoparticles: surface-enhanced Raman scattering and electrocatalytic activity. The Journal of Physical Chemistry C 2011, 115(47), 23374-23380.
    12. Dutta, A., Mondal, P., Density functional studies on structural, electronic and magnetic properties of Rh n (n= 9-20) clusters and OH bond of methanol activation by pure and ruthenium-doped rhodium clusters. Theoretical Chemistry Accounts: Theory, Computation, & Modeling 2019, 138(1).
    13. Li, M., Guo, W., Jiang, R., Zhao, L., Lu, X., Zhu, H., Fu, D., Shan, H., Density functional study of ethanol decomposition on Rh (111). The Journal of Physical Chemistry C 2010, 114(49), 21493-21503.
    14. Liu, C.-W., Chang, Y.-W., Wei, Y.-C., Wang, K.-W., The effect of oxygen containing species on the catalytic activity of ethanol oxidation for PtRuSn/C catalysts. Electrochimica Acta 2011, 56(5), 2574-2581.
    15. Xu, Z.-F., Wang, Y., Effects of alloyed metal on the catalysis activity of Pt for ethanol partial oxidation: adsorption and dehydrogenation on Pt3M (M= Pt, Ru, Sn, Re, Rh, and Pd). The Journal of Physical Chemistry C 2011, 115(42), 20565-20571.
    16. Iwasita, T., Electrocatalysis of methanol oxidation. Electrochimica Acta 2002, 47(22-23), 3663-3674.
    17. Jablonski, A., Lewera, A., Electrocatalytic oxidation of ethanol on Pt, Pt-Ru and Pt-Sn nanoparticles in polymer electrolyte membrane fuel cell—Role of oxygen permeation. Applied Catalysis B: Environmental 2012, 115, 25-30.
    18. dos Reis, R.G., Colmati, F., Electrochemical alcohol oxidation: a comparative study of the behavior of methanol, ethanol, propanol, and butanol on carbon-supported PtSn, PtCu, and Pt nanoparticles. Journal of Solid State Electrochemistry 2016, 20(9), 2559-2567.
    19. Yan, S.-Y., Huang, Y.-R., Yang, C.-Y., Liu, C.-W., Wang, J.-H., Wang, K.-W., Enhanced activity of ethanol oxidation reaction on PtM (M= Au, Ag and Sn): The importance of oxophilicity and surface oxygen containing species. Electrochimica Acta 2018, 259, 733-741.
    20. Guo, Y.-Z., Yan, S.-Y., Liu, C.-W., Chou, T.-F., Wang, J.-H., Wang, K.-W., The enhanced oxygen reduction reaction performance on PtSn nanowires: the importance of segregation energy and morphological effects. Journal of Materials Chemistry A 2017, 5(27), 14355-14364.
    21. Erini, N., Rudi, S., Beermann, V., Krause, P., Yang, R., Huang, Y., Strasser, P., Exceptional activity of a Pt–Rh–Ni ternary nanostructured catalyst for the electrochemical oxidation of ethanol. ChemElectroChem 2015, 2(6), 903-908.
    22. Chen, X., Cai, Z., Chen, X., Oyama, M., Green synthesis of graphene–PtPd alloy nanoparticles with high electrocatalytic performance for ethanol oxidation. Journal of Materials Chemistry A 2014, 2(2), 315-320.
    23. Wang, J.-H., Lee, C.-S., Lin, M.-C., Mechanism of ethanol reforming: theoretical foundations. The Journal of Physical Chemistry C 2009, 113(16), 6681-6688.
    24. Artyushkova, K., Halevi, B., Padilla, M., Atanassov, P., Baranova, E.A., Mechanistic study of electrooxidation of ethanol on PtSn nanoparticles in alkaline and acid media. Journal of The Electrochemical Society 2015, 162(6), H345.
    25. Syu, C.Y., Wang, J.H., Mechanistic study of the oxidative steam reforming of etoh on rh (111): The importance of the oxygen effect. ChemCatChem 2013, 5(10), 3164-3174.
    26. Chen, S., Shi, L., Wang, L., Mesoporous PtSnO 2/C catalyst with enhanced catalytic activity for ethanol electro-oxidation. Kemija u industriji: Časopis kemičara i kemijskih inženjera Hrvatske 2018, 67(1-2), 19-27.
    27. Zhu, H., Liu, Y., Shen, L., Wei, Y., Guo, Z., Wang, H., Han, K., Chang, Z., Microwave heated polyol synthesis of carbon supported PtAuSn/C nanoparticles for ethanol electrooxidation. International Journal of Hydrogen Energy 2010, 35(7), 3125-3128.
    28. Jin, J.-M., Sheng, T., Lin, X., Kavanagh, R., Hamer, P., Hu, P., Hardacre, C., Martinez-Bonastre, A., Sharman, J., Thompsett, D., The origin of high activity but low CO 2 selectivity on binary PtSn in the direct ethanol fuel cell. Physical Chemistry Chemical Physics 2014, 16(20), 9432-9440.
    29. Zhao, L., Wang, S., Ding, Q., Xu, W., Sang, P., Chi, Y., Lu, X., Guo, W., The oxidation of methanol on PtRu (111): a periodic density functional theory investigation. The Journal of Physical Chemistry C 2015, 119(35), 20389-20400.
    30. Chang, Y.-W., Liu, C.-W., Wei, Y.-C., Wang, K.-W., Promotion of PtRu/C anode catalysts for ethanol oxidation reaction by addition of Sn modifier. Electrochemistry Communications 2009, 11(11), 2161-2164.
    31. Dai, S., Huang, T.-H., Yan, X., Yang, C.-Y., Chen, T.-Y., Wang, J.-H., Pan, X., Wang, K.-W., Promotion of ternary Pt–Sn–Ag catalysts toward ethanol oxidation reaction: Revealing electronic and structural effects of additive metals. ACS Energy Letters 2018, 3(10), 2550-2557.
    32. Ma, Y., Wang, H., Ji, S., Linkov, V., Wang, R., PtSn/C catalysts for ethanol oxidation: the effect of stabilizers on the morphology and particle distribution. Journal of Power Sources 2014, 247, 142-150.
    33. Acres, G.J., Recent advances in fuel cell technology and its applications. Journal of Power Sources 2001, 100(1-2), 60-66.
    34. Dupont, C., Jugnet, Y., Delbecq, F., Loffreda, D., Restructuring of the Pt 3 Sn (111) surfaces induced by atomic and molecular oxygen from first principles. The Journal of Chemical Physics 2009, 130(12), 124716.
    35. Jin, C., Ma, X., Zhang, J., Huo, Q., Dong, R., Surface modification of Pt/C catalyst with Ag for electrooxidation of ethanol. Electrochimica Acta 2014, 146, 533-537.
    36. Taylor, E., Chen, S., Tao, J., Wu, L., Zhu, Y., Chen, J., Synthesis of Pt–Cu nanodendrites through controlled reduction kinetics for enhanced methanol electro‐oxidation. ChemSusChem 2013, 6(10), 1863-1867.
    37. Zhong, W., Liu, Y., Zhang, D., Theoretical study of methanol oxidation on the PtAu (111) bimetallic surface: CO pathway vs Non-CO pathway. The Journal of Physical Chemistry C 2012, 116(4), 2994-3000.
    38. Loffreda, D., Michel, C., Delbecq, F., Sautet, P., Tuning catalytic reactivity on metal surfaces: Insights from DFT. Journal of Catalysis 2013, 308, 374-385.
    39. Li, L., Liu, H., Qin, C., Liang, Z., Scida, A., Yue, S., Tong, X., Adzic, R.R., Wong, S.S., Ultrathin Pt x Sn1–x nanowires for methanol and ethanol oxidation reactions: tuning performance by varying chemical composition. ACS Applied Nano Materials 2018, 1(3), 1104-1115.
    40. Choi, Y., Liu, P., Understanding of ethanol decomposition on Rh (1 1 1) from density functional theory and kinetic Monte Carlo simulations. Catalysis Today 2011, 165(1), 64-70.
    41. Hsia, Y.-Y., Huang, Y.-C., Zheng, H.-S., Lai, Y.-L., Hsu, Y.-J., Luo, M.-F., Wang, J.-H., Effects of O2 and H2O in the oxidative steam-reforming reaction of ethanol on Rh catalysts. The Journal of Physical Chemistry C 2019, 123(18), 11649-11661.

    下載圖示
    QR CODE