簡易檢索 / 詳目顯示

研究生: 黃琬澐
Huang, Wan-Yun
論文名稱: 應用丙烯基醋酸酯合成四取代之呋喃與萘併呋喃
Efficient Synthesis of Tetrasubstituted Furans and Naphthofurans by Using Nitroallylic Acetates
指導教授: 陳焜銘
Chen, Kwun-Min
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 49
中文關鍵詞: 丙烯基醋酸酯四取代呋喃萘併呋喃1,3-雙酮萘醇Feist-Bénary
英文關鍵詞: allylic acetates, tetrasubstituted furans, naphthofurans, 1,3-diketones, naphthol, Feist-Bénary
論文種類: 學術論文
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 合成多取代呋喃與呋喃衍生物為有機合成中具挑戰性及重要的一環,本文以丙烯基醋酸酯為前驅物,分別與容易取得的1,3-雙酮/α-拉電子取代基酮類起始物,經過一系列條件篩選及取代基探討,推測反應機構經由SN2’ 加成-脫去反應,進行Feist-Bénary type反應,合成高產率之四取代呋喃產物(up to 99%)。其中,以1,3-環戊酮為起始物,則得到吡喃為主產物。另一方面,若以萘醇為起始物,不需路易士酸催化,即進行Freidel-Crafts SN2'反應過程,接著,以oxa-Micheal 合環反應,有效合成萘併呋喃(up to 96%)。此方法能應用於丙烯基醋酸酯上,含有各種拉電子基、推電子基、雜環取代及烷基取代。然而,欲合成苯併吲哚並未得到預期結果,得到SN2反應而未環化的產物。

    Synthesis of polysubstituted furans and naphthofurans represent an important subclass in organic synthesis. Herein, we develop a new synthetic strategy for accessing tetrasubstituted furans by Feist-Bénary type reaction between allylic acetate precursor and 1,3-dicarbonyl/ α-withdrawing ketones. After studying a series of substrate scope under optimized conditions, we provided a reasonable mechanism. In this process, nucleophile attacks to Michael acceptor by SN2’ process, then undergo addition-elimination to give desired aromatic furan compounds(chemical yield up to 96% ). The use of 1,3-cyclopentandione as starting material, pyran is obtained as major product. On the other hand, use of naphthol as starting material, reaction proceeded through Freidel-Crafts SN2' process followed by intramolecular oxa-Micheal cyclization and subsequently aromatization to give naphthofurans(chemical yield up to 96%). This method can be applied to different functional groups on allylic acetates, such as electron-donating, electron-withdrawing, heteroaromatic and aliphatic groups. However, when 1-aminonaphthalene was used as the nucleophile, instead of the desired benzoindole, we got SN2 addition compound.

    中文摘要....................................................4 英文摘要....................................................5 第一章 緒論 1-1呋喃的背景與應用………………………………………………………………...................6 1-2萘並呋喃的應用…………………………………………………………………...................8 1-3呋喃相關文獻介紹………………………………………………………………..................9 1-3-1直接對呋喃進行官能基化反應……………………………………………............10 1-3-2 非環狀系統進行環化反應………………………………………………..............11 1-3-2-1 Paal-Knorr 反應………………………………………………………..........11 1-3-2-2 Feist-Bénary 反應…………………………………………………..........12 1-3-2-3 有機膦試劑環化縮合反應……………………………………………...........14 1-3-2-4 過渡金屬催化合成呋喃分子…………………………………………..........17 1-3-2-4-1 聯烯類化合物之環化反應……………………………………….........17 1-3-2-4-2 α-炔基烯酮之環化反應………………………………………….........18 1-3-2-4-3環丙烯基烯酮之環化反應………………………………………..........20 1-4萘並呋喃相關文獻介紹…………………………………………………………................22 1-4-1 鋰試劑合成萘並呋喃……………………………………………………...............22 1-4-2 氧化鋁合成萘並呋喃……………………………………………………...............23 1-4-3 過渡金屬合成萘並呋喃…………………………………………………..............25 1-5研究動機…………………………………………………………………………....................27 第二章 結果與討論 2-1 起始物丙烯基醋酸酯之製備…………………………………………………..............28 2-2 合成多取代呋喃反應之探討………………………………………………….............29 2-2-1鹼試劑之篩選…………………………………………………....................30 2-2-2溶劑效應………………………………………………….........................31 2-2-3 1,3-環狀雙酮始物與丙烯基醋酸酯反應之探討……….............32 2-2-4 環戊二酮與丙烯基醋酸酯反應生成吡喃反應之探討………..........35 2-2-5 α-拉電子取代基酮類起始物合成四取代呋喃………...............36 2-3 合成呋喃反應機構之探討……….................................38 2-4 Friedel-Crafts反應合成萘併呋喃之探討………...................39 2-4-1優化條件篩選………......................................39 2-4-2不同起始物之探討….....................................41 2-5 萘胺與丙烯基醋酸酯反應之探討…..............................43 2-6 合成萘併呋喃反應機構之探討…...............................45 2-7 結論………...............................................46 第三章 參考文獻.............................................47

    [1] http://en.wikipedia.org/wiki/Furan
    [2] H. Limpricht, Justus Liebigs Annalen der Chemie, 1873, 165, 279.
    [3] (a) Y. Hayakawa, K. Kawakami, H. Seto, K. Furihata, Tetrahedron Lett., 1992, 33, 2701. (b) A. Fürstner, H. Weintritt, J. Am. Chem. Soc., 1998, 120, 2817. (c) A. Fürstner, K. Reinecke, H. Prinz, H. Waldmann, ChemBioChem, 2004, 5, 1575.
    [4] J. A. Marshall, J. Liao, J. Org. Chem., 1998, 63, 5962.
    [5] (a) R. L. Glass, T. P. Krick, D. M. Sand, C. H. Rahn, H. Schlenk, Lipids, 1975, 10, 695. (b) C. H. Rahn, D. M. Sand, Y. Wedmid, H. Schlenk, J. Org. Chem., 1979, 44, 3420. (c) M.S.F. Lie Ken Jie, C. H. Lam, Chem. Phys. Lipids, 1978, 21, 275. (d) K. Hannemann, V. Puchta, E. Simon, H. Ziegler, G. Ziegler, G. Spiteller, Lipids, 1989, 24, 296. (e) H. Guth, W. Grosch, Z Lebensm Unters Forsch, 1992, 194, 360.
    [6] S. P. Tanis, M. V. Deaton, L.A. Dixon, M. C. McMills, J. W. Raggon, M. A. Collins, J. Org. Chem., 1998, 63, 6914.。
    [7] (a) H.-X. Xu, H. Dong, K.-Y. Sim, phytochemistry, 1996, 42, 149. (b) I. Margaros, G. Vassilikogiannakis, J. Org. Chem., 2008, 73, 2021.
    [8] J.-P. Lumb, D. Trauner, J. Am. Chem. Soc., 2005, 127, 2870.
    [9] J. Padwal, W. Lewis, C. J. Moody, J. Org. Chem. 2011, 76, 8082.
    [10] S. F. Kirsch, Org. Biomol. Chem., 2006, 4, 2076.
    [11] (a) I. Bock, H. Bornowski, A. Ranft, H. Theis, Tetrahedron, 1990, 46, 1199. (b) X. L. Hou, H. Y. Cheung, T. Y. Hon, P, L, Kwan, T. H. Lo, S. Y. Tong, H. N.C. Wong, Tetrahedron, 1998, 54, 1955.
    [12] H. Ila, O. Baron, A. J. Wagner, P. Knochel, Chem. Commun., 2006, 583.
    [13] (a) C. Paal, Chem. Ber., 1884, 17, 2756. (b) L. Knorr, Chem. Ber., 1884, 17, 2863.
    [14] V. Amarnath, K. Amarnath, J. Org. Chem., 1995, 60, 301.
    [15] (a) F. Feist, Chem. Ber., 1902, 35, 1537. (b) E. Bénary, Chem. Ber.,1911, 44, 489.
    [16] L. Kürti, B. Czakö, Strategic Applications of Named Reactions in Organic Synthesis, Elsevier, Amsterdam, 2005.
    [17] G. Mross, E. Holtz, P. Langer, J. Org. Chem., 2006, 71, 8045.
    [18] C.-K. Jung, J.-C. Wang, M. J. Krische. J. Am. Chem. Soc., 2004, 126, 4118.
    [19] T.-T. Kao, S.-e. Syu, Y.-W. Jhnag, W. Lin, Org. Lett., 2010, 12, 3066.
    [20] J. Zang, H.-G. Schmalz, Angew. Chem., 2006, 118, 6856.
    [21] J. A. Marshall, E. D. Robinson, J. Org. Chem., 1990, 55, 3450.
    [22] A. S. K. Hashimi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem. Int. Ed., 2000, 39, 2285.
    [23] (a)A. V. Kel’in, V. Gevergyan, J. Org. Chem., 2002, 67, 95. (b) A. S. Dudnik, V. Gevergyan, Angew. Chem., 2007, 119, 5287. (c) A. S. Dudnik, A. W. Sromek, M. Rubina, J. T. Kim, A. V. Kel’in, V. Gevergyan, V. Gevergyan, J. Am. Chem. Soc., 2008, 130, 1440.
    [24] (a)T. Yao, X. Zhang, R. C. Larock, J. Org. Chem., 2005, 70, 7679. (b) T. Yao, X. Zhang, R. C. Larock, J. Am. Chem. Soc., 2004, 126, 11164.
    [25] S. Ma, J. Zhang, J. Am. Chem. Soc., 2003, 125, 12386.
    [26] E. Ghera, R. Maurya, Tetrahedron Lett., 1987, 28, 709.
    [27] N. S. Narasimhan, R. S. Mali, Tetrahedron, 1975, 31, 1005.
    [28] L. Arias, Y. Vara, F. P. Cossío., J. Org. Chem., 2012, 77, 266.
    [29] N. Sakiyama, K. Noguchi, K. Tanaka, Angew. Chem. Int. Ed., 2012, 51, 1.
    [30] I. Deb, M. Dadwal, S. M. Mobin, I. N. N. Namboothiri, Org. Lett., 2006, 8, 1201.
    [31] H.-H. Kuan, R. J. Reddy, K. Chen, Tetrahedron, 2010, 66, 9875.
    [32] (a) J. M. Keith, J. F. Larrow, E. N. Jacobsen, Adv. Synth. Catal., 2001, 343, 5.(b) D. E. J. E. Robinson, S. D. Bull, Tetrahedron: Asymmetry, 2003, 14, 1407.(c) E. Vedejs, M. Jure, Angew. Chem. Int. Ed., 2005, 44, 3974.
    [33] R. J. Reddy, K. Chen, Org. Lett., 2011, 13, 1458.
    [34] J. E. Balwin, J. C. S. Chem. Commun., 1976, 734.
    [35] G. Liang, S. N. Gradl, D. Trauner, Org. Lett., 2003, 5, 4931.
    [36] S. W. Youn, J. I. Eom, Org. Lett. 2005, 7, 3355.

    下載圖示
    QR CODE