簡易檢索 / 詳目顯示

研究生: 沈震
Shen, Cheng
論文名稱: 高爾夫球推桿學習階段對準備狀態之SMR與MU波之影響
The effect of learning stage of golf putting on SMR and Mu rhythm
指導教授: 洪聰敏
Hung, Tsung-Min
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 42
中文關鍵詞: 動作學習自動化腦波
英文關鍵詞: motor learning, automatic, EEG
DOI URL: https://doi.org/10.6345/NTNU202203551
論文種類: 學術論文
相關次數: 點閱:186下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

目的:本研究之目的為探討學習高爾夫球推桿後,參與者在推桿準備期之Mu波 (Mu rhythm) 與感覺動作頻率 (SMR, sensorimotor rhythm) 是否隨著學習而改變。Mu節律與SMR功率之大小被認為與大腦的動作區活化程度有關。Mu波與動作的觀察與執行息息相關,而SMR則與執行動作時的注意力有關聯。雖然兩種腦波指標與動作執行與觀察有高度的關聯,但過去的研究顯少探討動作學習與這兩種腦波指標的關係。方法:本研究研究參與者為四十一名男性,並將參與者分成實驗組與控制組兩組。實驗組20人,控制組21人。兩組參與者皆收取四個學習階段之腦波資料,實驗組參與者在每階段之間須進行每週三次以上的高爾夫球推桿練習,控制組則無須練習。此外,實驗組參與者在收取資料時除了推桿動作外,還需進行撥拉棒作業,以比較實驗組參與者在執行熟悉動作 (推桿) 與非熟悉動作 (撥拉棒) 之差異。本研究比較兩組參與者之推桿分數、推桿準備期之Mu波與SMR功率,以及實驗組本身執行推桿與撥拉棒兩種動作準備狀態之Mu波與SMR功率。結果:經由練習後,實驗組之推桿成績明顯高於控制組。以混合設計二因子變異數分析 (組別x 階段) 比較兩組SMR與Mu波之功率後發現兩種腦波指標皆無交互作用。事後比較後顯示Mu波功率在階段有主效果,隨著階段而上升,而其他統計皆未達顯著。比較實驗組兩種動作準備期之SMR與Mu波後發現不論在何種階段,推桿之Mu波與SMR階高於撥拉棒。結論:本研究發現與過去研究有所差異,其原因可能是因為實驗組練習介入時間不足,導致參與者還未達到"自動化”階段。而兩種動作作業之差異可能來自於動作類型的不同。

Purpose: The purpose of current study was to examine the effect of learning stage of golf putting on Mu rhythm and SMR (sensorimotor rhythm). Previous study reported that Mu rhythm and SMR could be related to activation of motor cortex. Mu rhythm is suggested to be related to movement observation and execution. SMR is linked with attention during movement execution. However, there were only a piecemeal literatures focused on whether motor learning would influence on Mu rhythm and SMR power. Method: The present study recruited 41 male participants, with 20 of them were assigned to the experimental group. Data on Electroencephalography of four learning stages were collected form all participants. The experimental group was instructed to practice golf putting at least 3 times a week between each learning stage. To examine the difference Mu and SMR power between familiar movement and unfamiliar movement, the experimental group was also instructed to perform sticks juggling during EEG data collection. Result: Results showed that Mu rhythm was increased by learning stage gradually. Regarding the effect of movement type, gold putting demonstrated greater effects on SMR and Mu rhythm compared with sticks juggling. Conclusion: The result of the present study were different with previous literature. The main reason of this difference may be resulted from the duration of the practice. Besides, the result of the movement task maybe arise from different movement type.

目 次 中文摘要…………………………………………………………………………….i 英文摘要………………………………………………………………………....….ii 謝誌………………………………………………………………………………….iii 目次……………………………………………………………………………...…..iv 圖次………………………………………………………………………………….vi 第壹章 緒論 第一節 問題背景………………………………………………………………....1 第二節 研究目的………………………………………………………………....3 第三節 研究問題………………………………………………………………....3 第四節 研究假設………………………………………………………………....4 第五節 研究限制………………………………………………………………....4 第六節 操作性名詞定義…………………………………………………………4 第貳章 文獻探討 第一節 動作學習與大腦…………………………………………………...…….6 第二節 與運動表現有關之腦波指標……………………………………...…….8 第參章 研究方法與步驟 第一節 實驗參與者……………………………………………………………...10 第二節 實驗時間與地點………………………………………………………...10 第三節 實驗設計………………………………………………………………...11 第四節 實驗流程…………………………………………………………………....12 第五節 實驗之依變項………………………………………………………………15 第六節 實驗儀器、工具及裝置……………………………………………………15 第七節 資料處理……………………………………………………………………18 第八節 控制分析……………………………………………………………………19 第肆章 結果 第一節 推桿表現………………………………………………………………….…25 第二節 腦波資料…………………………………………………………………….26 第伍章 討論 第一節 Mu波與動作學習之關係..............................................................................31 第二節 SMR與動作學習之關係...............................................................................32 第三節 結論與建議………………………………………………………………….33 參考文獻…………………………………………………………………………….…35   圖 次 圖3-1 研究架構………………………………………………………..…….…...11 圖3-2 研究架構與步驟…………………………………………….…..…..…….11 圖3-3 實驗流成 (實驗組) ………………………………………………..……..13 圖3-4 練習介入流程..............................................................................................14 圖3-5 實驗流成 (控制組) ………………………………………………..……..14 圖3-6 果嶺圖……………………………………………………………….....….16 圖4-1 推桿表現……………………………………………………………..……24 圖4-2 撥拉棒表現…………………………………………………………..……25 圖4-3 組間Mu波功率圖………………………………………………….…….26 圖4-4 組間SMR功率圖……………………………………………….……..…27 圖4-5 組內Mu波功率圖……………………………………………….…….…28 圖4-6 組內SMR功率圖………………………………………………….….….28 圖4-7 Fmθ功率圖………………………………………………………….……28 圖4-8 T3α功率圖………………………………………………………….…….30

Abemethy, B., & Russell, D. G. (1987). Expert-novice differences in an applied selective attention task. Journal of Sport Psychology, 9, 326-345.
Anderson, J. R. (1996). The architecture of cognition, 1983. Cambridge: MA.
Babiloni, C., Carducci, F., Cincotti, F., Rossini, P. M., Neuper, C., Pfurtscheller, G., & Babiloni, F. (1999). Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. Neuroimage, 10, 658-665.
Babiloni, C., Del Percio, C., Iacoboni, M., Infarinato, F., Lizio, R., Marzano, N., . . . Gallamini, M. (2008). Golf putt outcomes are predicted by sensorimotor cerebral EEG rhythms. The Journal of physiology, 586, 131-139.
Babiloni, C., Marzano, N., Infarinato, F., Iacoboni, M., Rizza, G., Aschieri, P., . . . Del Percio, C. (2010). “Neural efficiency” of experts’ brain during judgment of actions: a high-resolution EEG study in elite and amateur karate athletes. Behavioural Brain Research, 207, 466-475.
Barnea, A., Rassis, A., & Zaidel, E. (2005). Effect of neurofeedback on hemispheric word recognition. Brain and cognition, 59, 314-321.
Başar, E., Başar-Eroglu, C., Karakaş, S., & Schürmann, M. (2001). Gamma, alpha, delta, and theta oscillations govern cognitive processes. International Journal of Psychophysiology, 39, 241-248.
Başar, E., Başar-Eroğlu, C., Karakaş, S., & Schürmann, M. (2000). Brain oscillations in perception and memory. International Journal of Psychophysiology, 35, 95-124.
Baumeister, J., Reinecke, K., Liesen, H., & Weiss, M. (2008). Cortical activity of skilled performance in a complex sports related motor task. European journal of applied physiology, 104, 625-631.
Callan, D. E., & Naito, E. (2014). Neural processes distinguishing elite from expert and novice athletes. Cognitive and Behavioral Neurology, 27), 183-188.
Cattaneo, L., & Rizzolatti, G. (2009). The mirror neuron system. Archives of neurology, 66, 557-560.
Cheng, M.-Y., Hung, C.-L., Huang, C.-J., Chang, Y.-K., Lo, L.-C., Shen, C., & Hung, T.-M. (2015). Expert-novice differences in SMR activity during dart throwing. Biological psychology, 110, 212-218.
Cheyne, D. O. (2013). MEG studies of sensorimotor rhythms: a review. Experimental neurology, 245, 27-39.
Chuang, L. Y., Huang, C. J., & Hung, T. M. (2013). The differences in frontal midline theta power between successful and unsuccessful basketball free throws of elite basketball players. International Journal of Psychophysiology, 90, 321-328.
Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. Journal of Neurophysiology, 79, 1117-1123.
Deeny, S. P., Haufler, A. J., Saffer, M., & Hatfield, B. D. (2009). Electroencephalographic coherence during visuomotor performance: a comparison of cortico-cortical communication in experts and novices. Journal of motor behavior, 41, 106-116.
Del Percio, C., Marzano, N., Tilgher, S., Fiore, A., Di Ciolo, E., Aschieri, P., . . . Eusebi, F. (2007). Pre-stimulus alpha rhythms are correlated with post-stimulus sensorimotor performance in athletes and non-athletes: a high-resolution EEG study. Clinical Neurophysiology, 118, 1711-1720.
Del Percio, C., Rossini, P. M., Marzano, N., Iacoboni, M., Infarinato, F., Aschieri, P., . . . Babiloni, C. (2008). Is there a “neural efficiency” in athletes? A high-resolution EEG study. Neuroimage, 42, 1544-1553.
Donahue, M. J., Hoogduin, H., Smith, S. M., Siero, J. C., Chappell, M., Petridou, N., . . . Hendrikse, J. (2012). Spontaneous blood oxygenation level‐dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0‐T fMRI study. Human brain mapping, 33, 511-522.
Doppelmayr, M., & Weber, E. (2011). Effects of SMR and theta/beta neurofeedback on reaction times, spatial abilities, and creativity. Journal of Neurotherapy, 15, 115-129.
Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., . . . Benali, H. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. Behavioural Brain Research, 199, 61-75.
Egner, T., & Gruzelier, J. H. (2001). Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. Neuroreport, 12, 4155-4159.
Egner, T., & Gruzelier, J. H. (2004). EEG biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials. Clinical Neurophysiology, 115, 131-139.
Fitts, P. M., & Posner, M. I. (1967). Human performance. Michigan, MI: Brooks/Cole Publishing Company
Frith, C. D., Friston, K., Liddle, P. F., & Frackowiak, R. S. J. (1991). Willed Action and the Prefrontal Cortex in Man: A Study with PET. Proceedings of the Royal Society of London B: Biological Sciences, 244, 241-246.
Gerardin, E., Sirigu, A., Lehéricy, S., Poline, J.-B., Gaymard, B., Marsault, C., . . . Le Bihan, D. (2000). Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex, 10, 1093-1104.
Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7, 374-385.
Gruzelier, J. H., Foks, M., Steffert, T., Chen, M. J., & Ros, T. (2014). Beneficial outcome from EEG-neurofeedback on creative music performance, attention and well-being in school children. Biological psychology, 95, 86-95.
Hélie, S., Ell, S. W., & Ashby, F. G. (2015). Learning robust cortico-cortical associations with the basal ganglia: An integrative review. Cortex, 64, 123-135.
Halder, S., Agorastos, D., Veit, R., Hammer, E. M., Lee, S., Varkuti, B., . . . Kübler, A. (2011). Neural mechanisms of brain–computer interface control. Neuroimage, 55, 1779-1790.
Hardwick, R. M., Rottschy, C., Miall, R. C., & Eickhoff, S. B. (2013). A quantitative meta-analysis and review of motor learning in the human brain. Neuroimage, 67, 283-297.
Hatfield, B. D., Landers, D. M., & Ray, W. J. (1984). Cognitive processes during self-paced motor performance: An electroencephalographic profile of skilled marksmen. Journal of Sport Psychology, 6, 42-59.
Haufler, A. J., Spalding, T. W., Santa Maria, D. L., & Hatfield, B. D. (2000). Neuro-cognitive activity during a self-paced visuospatial task: comparative EEG profiles in marksmen and novice shooters. Biological psychology, 53, 131-160.
Howe, R. C., & Sterman, M. B. (1972). Cortical-subcortical EEG correlates of suppressed motor behavior during sleep and waking in the cat. Electroencephalogr Clin Neurophysiol, 32, 681-695.
Hung, T. M., Haufler, A. J., Lo, L. C., Gottfried, M. K., & Hatfield, B. D. (2008). Visuomotor expertise and dimensional complexity of cerebral cortical activity. Medicine and science in sports and exercise, 40, 752.
K.R, L., K, W., L.A, B., & N.J, H. (2014). Motor skill acquisition across short and long time scales: A meta-analysis of neuroimaging data. Neuropsychologia, 59, 130-141.
Kao, S.-C., Huang, C.-J., & Hung, T.-M. (2013). Frontal Midline Theta is a Specific Indicator of Optimal Attentional Engagement During Skilled Putting Performance. Journal of Sport & Exercise Psychology, 35, 470-478.
Kaufer, D., & Lewis, D. (1999). Frontal lobe anatomy and cortical connectivity. The human frontal lobes, 27-44.
Kerick, S. E., McDowell, K., Hung, T.-M., Santa Maria, D. L., Spalding, T. W., & Hatfield, B. D. (2001). The role of the left temporal region under the cognitive motor demands of shooting in skilled marksmen. Biological psychology, 58, 263-277.
Kiefer, A., Gualberto Cremades, J., & Myer, G. (2014). Train the Brain: Novel Electroencephalography Data Indicate Links between Motor Learning and Brain Adaptations. J Nov Physiother, 4, 2.
Klimesch, W., Doppelmayr, M., Schwaiger, J., Auinger, P., & Winkler, T. (1999). 'Paradoxical' alpha synchronization in a memory task. Cognitive Brain Research, 7, 493-501.
Kober, S. E., Witte, M., Stangl, M., Valjamae, A., Neuper, C., & Wood, G. (2015). Shutting down sensorimotor interference unblocks the networks for stimulus processing: An SMR neurofeedback training study. Clinical Neurophysiology, 126, 82-95.
Koshino, Y., & Niedermeyer, E. (1975). Enhancement of rolandic mu-rhythm by pattern vision. Electroencephalography and clinical neurophysiology, 38, 535-538.
Krakauer, J. W. (2009). Motor learning and consolidation: the case of visuomotor rotation . Progress in Motor Control, 629, 405-421.
Krause, C. M., Sillanmäki, L., Koivisto, M., Saarela, C., Häggqvist, A., Laine, M., & Hämäläinen, H. (2000). The effects of memory load on event-related EEG desynchronization and synchronization. Clinical Neurophysiology, 111, 2071-2078.
Kuhlman, W. N. (1978). EEG feedback training: enhancement of somatosensory cortical activity. Electroencephalography and clinical neurophysiology, 45, 290-294.
Landers, D. M., Han, M., Salazar, W., & Petruzzello, S. J. (1994). Effects of learning on electroencephalographic and electrocardiographic patterns in novice archers. International Journal of Sport Psychology, 25, 313-330.
Lemon, R. N., & Griffiths, J. (2005). Comparing the function of the corticospinal system in different species: organizational differences for motor specialization? Muscle & nerve, 32, 261-279.
Leocani, L., Toro, C., Zhuang, P., Gerloff, C., & Hallett, M. (2001). Event-related desynchronization in reaction time paradigms: a comparison with event-related potentials and corticospinal excitability. Clinical Neurophysiology, 112, 923-930.
Linkenkaer-Hansen, K., Nikulin, V. V., Palva, S., Ilmoniemi, R. J., & Palva, J. M. (2004). Prestimulus oscillations enhance psychophysical performance in humans. The Journal of Neuroscience, 24, 10186-10190.
Magill, R. A., & Anderson, D. I. (2007). Motor learning and control: Concepts and applications (Vol. 11): McGraw-Hill New York, NY.
Mann, C. A., Sterman, M. B., & Kaiser, D. A. (1996). Suppression of EEG rhythmic frequencies during somato-motor and visuo-motor behavior. International Journal of Psychophysiology, 23, 1-7.
Muthukumaraswamy, S. D., & Johnson, B. W. (2004). Primary motor cortex activation during action observation revealed by wavelet analysis of the EEG. Clinical Neurophysiology, 115, 1760-1766.
Myer, G. D., Kushner, A. M., Faigenbaum, A. D., Kiefer, A., Kashikar-Zuck, S., & Clark, J. F. (2013). Training the developing Brain, Part I: Cognitive developmental considerations for training youth. Current sports medicine reports, 12, 304-310.
Nakata, H. (2015). Sports Performance and the Brain Sports Performance (pp. 3-12): Springer.
Orgs, G., Dombrowski, J. H., Heil, M., & Jansen‐Osmann, P. (2008). Expertise in dance modulates alpha/beta event‐related desynchronization during action observation. European Journal of Neuroscience, 27, 3380-3384.
Palva, S., & Palva, J. M. (2007). New vistas for α-frequency band oscillations. Trends in neurosciences, 30, 150-158.
Park, J. L., Fairweather, M. M., & Donaldson, D. I. (2015). Making the case for mobile cognition: EEG and sports performance. Neuroscience & Biobehavioral Reviews, 52, 117-130.
Percio, C. D., Infarinato, F., Iacoboni, M., Marzano, N., Soricelli, A., Aschieri, P., . . . Babiloni, C. (2010). Movement-related desynchronization of alpha rhythms is lower in athletes than non-athletes: a high-resolution EEG study. Clinical Neurophysiology, 121, 482-491.
Pfurtscheller, G. (1992). Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalography and clinical neurophysiology, 83, 62-69.
Pfurtscheller, G., Brunner, C., Schlögl, A., & Lopes da Silva, F. (2006). Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage, 31, 153-159.
Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110, 1842-1857.
Pfurtscheller, G., & Neuper, C. (1997). Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters, 239, 65-68.
Pfurtscheller, G., Stancak Jr, A., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical idling: a review. International Journal of Psychophysiology, 24, 39-46.
Pineda, J. A. (2005). The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain research reviews, 50, 57-68.
Pineda, J. A. (2008). Sensorimotor cortex as a critical component of an ‘extended’mirror neuron system: does it solve the development, correspondence, and control problems in mirroring. Behavioral and Brain Functions, 4, 47.
Poldrack, R. A., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Bookheimer, S. Y., & Knowlton, B. J. (2005). The neural correlates of motor skill automaticity. The Journal of Neuroscience, 25, 5356-5364.
Pollok, B., Latz, D., Krause, V., Butz, M., & Schnitzler, A. (2014). Changes of motor-cortical oscillations associated with motor learning. Neuroscience, 275, 47-53.
Ritter, P., Moosmann, M., & Villringer, A. (2009). Rolandic alpha and beta EEG rhythms' strengths are inversely related to fMRI‐BOLD signal in primary somatosensory and motor cortex. Human brain mapping, 30, 1168-1187.
Ros, T., Moseley, M. J., Bloom, P. A., Benjamin, L., Parkinson, L. A., & Gruzelier, J. H. (2009). Optimizing microsurgical skills with EEG neurofeedback. BMC Neurosci, 10, 87.
Sabate, M., Llanos, C., Enriquez, E., & Rodriguez, M. (2012). Mu rhythm, visual processing and motor control. Clinical Neurophysiology, 123, 550-557.
Salenius, S., Schnitzler, A., Salmelin, R., Jousmäki, V., & Hari, R. (1997). Modulation of human cortical rolandic rhythms during natural sensorimotor tasks. Neuroimage, 5, 221-228.
Savelsbergh, G. J., Williams, A. M., Kamp, J. V. D., & Ward, P. (2002). Visual search, anticipation and expertise in soccer goalkeepers. Journal of sports sciences, 20, 279-287.
Schaechter, J. D., van Oers, C. A., Groisser, B. N., Salles, S. S., Vangel, M. G., Moore, C. I., & Dijkhuizen, R. M. (2012). Increase in sensorimotor cortex response to somatosensory stimulation over subacute poststroke period correlates with motor recovery in hemiparetic patients. Neurorehabilitation and Neural Repair, 26, 325-334.
Schmidt, R. A., & Lee, T. (1988). Motor Control and Learning, 5E: Human kinetics.
Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185, 359-381.
Shadmehr, R., & Wise, S. P. (2005). The computational neurobiology of reaching and pointing: a foundation for motor learning. MIT press.
Sterman, M. B. (1996). Physiological origins and functional correlates of EEG rhythmic activities: implications for self-regulation. Biofeedback Self Regul, 21, 3-33.
Sterman, M. B., & Friar, L. (1972). Suppression of seizures in an epileptic following sensorimotor EEG feedback training. Electroencephalography and clinical neurophysiology, 33, 89-95.
Sun, F. T., Miller, L. M., Rao, A. A., & D'Esposito, M. (2007). Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cerebral Cortex, 17, 1227-1234.
Thomas, C., & Baker, C. I. (2013). Teaching an adult brain new tricks: A critical review of evidence for training-dependent structural plasticity in humans. Neuroimage, 73, 225-236.
Wu, T., Kansaku, K., & Hallett, M. (2004). How self-initiated memorized movements become automatic: a functional MRI study. Journal of Neurophysiology, 91, 1690-1698.
Zhu, F. F., Maxwell, J. P., Hu, Y., Zhang, Z. G., Lam, W. K., Poolton, J. M., & Masters, R. S. (2010). EEG activity during the verbal-cognitive stage of motor skill acquisition. Biol Psychol, 84, 221-227.
王國鑌, 陳泰廷, 黃崇儒, & 洪聰敏. (2015). 鏡像神經元之旅:以Mu節律探討動作技能學習與運動表現. 臺灣運動心理學報, 15, 127-147.
高士竣, 洪聰敏, & 黃崇儒. (2009). 較佳精準運動表現中專注的腦波特徵. 中華體育季刊, 23, 1-16.

下載圖示
QR CODE