研究生: |
施懿軒 SHIH, YI-HSUAN |
---|---|
論文名稱: |
探討探究與實作課程對高中生科學學習動機剖面之影響 Investigating the Effects of Inquiry and Practices Course on High School Students’ Motivational Profiles towards Science Learning |
指導教授: |
方素琦
Fang, Su-Chi |
口試委員: |
方素琦
Fang, Su-Chi 段曉林 Tuan, Hsiao-Lin 林志鴻 Lin, Jr-Hung |
口試日期: | 2024/06/24 |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 科學探究 、探究與實作 、學習動機 、潛在剖面分析 |
英文關鍵詞: | Scientific inquiry, Inquiry and Practice, Learning motivation, Latent Profile Analysis |
研究方法: | 調查研究 |
DOI URL: | http://doi.org/10.6345/NTNU202500119 |
論文種類: | 學術論文 |
相關次數: | 點閱:30 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
108課綱新增「探究與實作」課程為高級中等學校教育階段的必修課程,盼學生能透過實作的歷程習得探究的技能,並進一步瞭解科學的本質。要能成功實施一門全新的課程,教師和學生皆扮演重要的角色。然而,目前在臺灣與探究與實作課程相關的研究大部分皆聚焦在教師層面,對學生學習狀況的探討相對較少,也鮮少從學生的觀點討論此課程的實施狀況及影響。本研究採鑲嵌式混合研究法探討探究與實作課程對高中生科學學習動機剖面的影響,及學生科學學習動機維持與轉變的原因。本研究使用「科學學習動機問卷 (SMTSL) (Tuan, Chin, & Shieh, 2005)」調查高中生在探究與實作課程前後的科學學習動機。該問卷包括六個向度,分別為:「自我效能(SE)」、「主動學習策略(ALS)」、「科學學習價值(SLV)」、「表現目標導向(PG)」、「成就目標(AG)」與「學習環境誘因(LES)」。在資料分析上,透過潛在剖面分析 (LPA) 辨別學生在探究與實作課程前後的科學學習動機潛在剖面,再分析問卷中質性資料探討學生科學學習動機剖面維持與轉變的可能原因。此外,研究者藉由教師訪談了解教師探究與實作課程的理念、設計與實施內容。
LPA分析結果辨識出三種科學學習動機剖面,分別為「高科學學習動機的主動學習者」、「中科學學習動機的均衡學習者」及「低科學學習動機的表現目標導向學習者」。問卷質性資料分析結果顯示,學生間的同儕互動、探究與實作中動手操作的特質、學生在探究與實作課程中的情緒、教師的課程安排等因素為影響學生科學學習動機剖面維持與轉變之原因。
According to the Taiwan 108 Curriculum Guidelines, the "Inquiry and Practice" course is mandated in senior high school education to foster students' inquiry skills and deepen their understanding of the nature of science through practical experiences. To successfully implement a new course, it is important to take both teachers’ and students’ perspectives into account. In a review of the research related to Inquiry and Practice in Taiwan, however, it seems that most of the studies concentrate on the teacher aspect. Little research is focused on the students or the relevant issues from the student’s perspective. This study employed an embedded mixed-methods research design to investigate how the Inquiry and Practice course affected high school students' motivation profiles for learning science and the factors influencing whether students maintain or change their motivation profiles. This study used the "Science Motivation toward Science Learning (SMTSL)" (Tuan, Chin, & Shieh, 2005) to survey high school students' motivation toward science learning. The questionnaire includes six dimensions: "Self Efficacy (SE)", "Active Learning Strategies (ALS)", "Science Learning Value (SLV)", "Performance Goal Orientation (PG)", "Achievement Goal (AG)", and "Learning Environment Stimulation (LES)". Latent Profile Analysis (LPA) was used for data analysis to identify the latent profiles of students' motivation towards science learning before and after the Inquiry and Practice course. Qualitative data from the questionnaire were analyzed to explore the possible reasons for maintaining and changing students' science learning motivation profiles. In addition, teacher interviews were conducted to explore their approaches to designing and implementing the Inquiry and Practice course, as well as to uncover the underlying reasons behind their methods.
The LPA analysis identified three profiles of students’ motivation toward science learning: "Active Learners with High Science Learning Motivation," "Balanced Learners with Medium Science Learning Motivation," and "Performance-Driven Learners with Low Science Learning Motivation." The qualitative data analysis revealed that peer interactions, hands-on tasks of inquiry and practice, students' emotions during the course, and the teachers' curriculum arrangements were the major factors affecting the maintenance and change of students' science learning motivation profiles.
李驥 (2020)。開發科學探究與實作評鑑工具評鑑四位高中自然探究與實作教師教學之成效 (未出版博士論文)。 國立臺灣師範大學。
洪菁穗、吳心楷 (2022)。高中科學教師對「探究與實作」課程的概念:課程特徵、挑戰、教學目標與教學活動。科學教育學刊,30(1),1-26。
孫志麟 (2003)。教師自我效能的概念與測量。教育心理學報。34(2),139-156。
高美玲、葉美玲 (1999)。結構方程模式的應用—驗證性因素分析。護理研究,7(6),594-605。
康智凱 (2018)。發展探究與實作教學模組對八年級學生學習動機與成效之影響-以溫度與熱單元為例 (未出版碩士論文)。國立臺灣師範大學。
張春興 (1996)。 教育心理學:三化取向的理論與實踐。臺北市:臺灣東華。
張珮珊、賴吉永、溫媺純 (2017)。科學探究與實作課程的發展、實施與評量:以實驗室中的科學論證為核心之研究。科學教育學刊,25(4),355-389。
教育部 (2018)。十二年國民基本教育課程綱要—自然科學領域。臺北:教育部。
陳欽雨、蔡宜雯(2016)。服務業員工自我概念、正向態度與專業契合對升遷機會之影響。人力資源管理學報。16(2),81-114。
楊鈞凱 (2023)。高中科學探究與實作課程中教師的形成性評量 (未出版碩士論文)。國立臺灣師範大學。
蔡哲銘 (2020)。探討以「建模導向探究」及「專題導向探究」的教學策略融入「探究與實作」課程設計下之學生學習成果 (未出版博士論文)。國立臺灣師範大學。
鄭紫杏 (2012)。實施探究教學對高中學生科學學習動機和科學創造力的影響 (未出版碩士論文)。國立彰化師範大學。
顏弘志 (2004)。從建構主義看探究教學。科學教育研究與發展季刊。18(2),35-42。
Açışlı, S., Yalçın, S. A., & Turgut, Ü. (2011). Effects of the 5E learning model on students’ academic achievements in movement and force issues. Procedia-social and behavioral sciences, 15, 2459-2462.
Babin, B. J., Hair, J. F., & Boles, J. S. (2008). Publishing research in marketing journals using structural equation modeling. Journal of marketing theory and practice, 16(4), 279-286.
Bandura, A. (1982). Self-efficacy mechanism in human agency. American psychologist, 37(2), 122.
Bandura, A., Freeman, W. H., & Lightsey, R. (1999). Self-efficacy: The exercise of control. In: springer.
Barlia, L. (1999). High school student's motivation to engage in conceptual change-learning in science. The Ohio State University.
Belland, B. R., Kim, C., & Hannafin, M. J. (2013). A framework for designing scaffolds that improve motivation and cognition. Educational psychologist, 48(4), 243-270.
Bhagat, K. K., & Chang, C.-Y. (2015). Incorporating GeoGebra into Geometry learning-A lesson from India. Eurasia Journal of Mathematics, Science and Technology Education, 11(1), 77-86.
Brophy, D. R. (1998). Understanding, measuring, and enhancing individual creative problem-solving efforts. Creativity Research Journal, 11(2), 123-150.
Brophy, J. (2004). Motivating students to learn. Routledge.
Brophy, J. (2005). Goal theorists should move on from performance goals. Educational psychologist, 40(3), 167-176.
Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. ERIC.
Cairns, D., & Areepattamannil, S. (2019). Exploring the relations of inquiry-based teaching to science achievement and dispositions in 54 countries. Research in science education, 49, 1-23.
Campbell, M. A. (2006). The effects of the 5E learning cycle model on students' understanding of force and motion concepts. University of Central Florida.
Council, N. R. (1996). National Science Education Standards. The National Academies Press. https://doi.org/doi:10.17226/4962
Council, N. R. (2000). Inquiry and the national science education standards: A guide for teaching and learning. National Academies Press.
Dewey, J. (1910). How We Think. Continuity, 3(40), 80.
Dobber, M., Zwart, R., Tanis, M., & van Oers, B. (2017). Literature review: The role of the teacher in inquiry-based education. Educational Research Review, 22, 194-214.
Dweek, C. S. (1986). Motivational processes affecting learning. context, 1040, 9.
Ellwood, R., & Abrams, E. (2018). Student’s social interaction in inquiry-based science education: How experiences of flow can increase motivation and achievement. Cultural Studies of Science Education, 13, 395-427.
Fang, S.-C., Hsu, Y.-S., Chang, H.-Y., Chang, W.-H., Wu, H.-K., & Chen, C.-M. (2016). Investigating the effects of structured and guided inquiry on students’ development of conceptual knowledge and inquiry abilities: a case study in Taiwan. International Journal of Science Education, 38(12), 1945-1971.
Ford, M. E. (1992). Motivating humans: Goals, emotions, and personal agency beliefs. Sage.
Gibson, W. A. (1959). Three multivariate models: Factor analysis, latent structure analysis, and latent profile analysis. Psychometrika, 24(3), 229-252.
Glynn, S. M., Taasoobshirazi, G., & Brickman, P. (2007). Nonscience majors learning science: A theoretical model of motivation. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 44(8), 1088-1107.
Glynn, S. M., Taasoobshirazi, G., & Brickman, P. (2009). Science motivation questionnaire: Construct validation with nonscience majors. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 46(2), 127-146.
Guay, F., Ratelle, C. F., & Chanal, J. (2008). Optimal learning in optimal contexts: The role of self-determination in education. Canadian psychology/Psychologie canadienne, 49(3), 233.
Herrmann, N. (1991). The creative brain. Journal of creative behavior, 25(4), 275-295.
Ho, H.-N. J., & Liang, J.-C. (2015). The relationships among scientific epistemic beliefs, conceptions of learning science, and motivation of learning science: a study of Taiwan high school students. International Journal of Science Education, 37(16), 2688-2707.
Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty‐first century. Science education, 88(1), 28-54.
Hong, W., Bernacki, M. L., & Perera, H. N. (2020). A latent profile analysis of undergraduates’ achievement motivations and metacognitive behaviors, and their relations to achievement in science. Journal of educational psychology, 112(7), 1409.
Jocz, J. A., Zhai, J., & Tan, A. L. (2014). Inquiry learning in the Singaporean context: Factors affecting student interest in school science. International Journal of Science Education, 36(15), 2596-2618.
Kline, P. (2015). A handbook of test construction (psychology revivals): introduction to psychometric design. Routledge.
Kubsch, M., Fortus, D., Neumann, K., Nordine, J., & Krajcik, J. (2023). The interplay between students' motivational profiles and science learning. Journal of research in science teaching, 60(1), 3-25.
Kuo, Y.-R., Tuan, H.-L., & Chin, C.-C. (2019). Examining low and non-low achievers’ motivation towards science learning under inquiry-based instruction. International journal of science and mathematics education, 17, 845-862.
Kuo, Y.-R., Tuan, H.-L., & Chin, C.-C. (2020). The influence of inquiry-based teaching on male and female students’ motivation and engagement. Research in science education, 50, 549-572.
Lati, W., Triampo, D., & Yodyingyong, S. (2019). Exposure to nanoscience and nanotechnology using guided-inquiry-based activities with silica aerogel to promote high school students’ motivation. Journal of Chemical Education, 96(6), 1109-1116.
Linnenbrink-Garcia, L., & Patall, E. (2016). Motivation. In, Corno, L., & Anderman, E.(EDs) Handbook of Educational Psychology. In: New York, NY: Routledge.
Lubke, G., & Muthén, B. O. (2007). Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling: A Multidisciplinary Journal, 14(1), 26-47.
Marshall, J. C., & Horton, R. M. (2011). The relationship of teacher‐facilitated, inquiry‐based instruction to student higher‐order thinking. School Science and Mathematics, 111(3), 93-101.
McClelland, D. C., & Atkinson, J. W. (1948). The projective expression of needs: I. The effect of different intensities of the hunger drive on perception. The Journal of Psychology, 25(2), 205-222.
McKeachie, W. J., Pintrich, P. R., & Lin, Y.-G. (1985). Teaching learning strategies. Educational psychologist, 20(3), 153-160.
McLachlan, G. J., Lee, S. X., & Rathnayake, S. I. (2019). Finite mixture models. Annual review of statistics and its application, 6, 355-378.
Membiela, P., Acosta, K., Yebra, M. A., & González, A. (2023). Motivation to learn science, emotions in science classes, and engagement towards science studies in Chilean and Spanish compulsory secondary education students. Science education, 107(4), 939-963.
Niemiec, C. P., & Ryan, R. M. (2009). Autonomy, competence, and relatedness in the classroom: Applying self-determination theory to educational practice. Theory and research in Education, 7(2), 133-144.
Palmer, D. (2005). A motivational view of constructivist‐informed teaching. International Journal of Science Education, 27(15), 1853-1881.
Palmer, M. A., Bernhardt, E., Allan, J. D., Lake, P. S., Alexander, G., Brooks, S., Carr, J., Clayton, S., Dahm, C., & Follstad Shah, J. (2005). Standards for ecologically successful river restoration. Journal of applied ecology, 42(2), 208-217.
Pea, C. H. (2012). Inquiry-based instruction: Does school environmental context matter? Science Educator, 21(1), 37.
Pekrun, R. (2018). Emotion, lernen und leistung. Bildung und emotion, 215-231.
Pintrich, P. R. (2003). A motivational science perspective on the role of student motivation in learning and teaching contexts. Journal of educational psychology, 95(4), 667.
Pintrich, P. R., & Schunk, D. H. (1996). Motivation in education: Theory, research, and applications.
Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary educational psychology, 25(1), 54-67.
Skinner, E. A., & Belmont, M. J. (1993). Motivation in the classroom: Reciprocal effects of teacher behavior and student engagement across the school year. Journal of educational psychology, 85(4), 571.
Tsai, C.-C., Ho, H. N. J., Liang, J.-C., & Lin, H.-M. (2011). Scientific epistemic beliefs, conceptions of learning science and self-efficacy of learning science among high school students. Learning and Instruction, 21(6), 757-769.
Tuan, H. L., Chin, C. C., & Shieh, S. H. (2005). The development of a questionnaire to measure students' motivation towards science learning. International Journal of Science Education, 27(6), 639-654. https://doi.org/10.1080/0950069042000323737
Tuan, H. L., Chin, C. C., Tsai, C.-C., & Cheng, S.-F. (2005). Investigating the effectiveness of inquiry instruction on the motivation of different learning styles students. International journal of science and mathematics education, 3, 541-566.
Wang, P.-H., Wu, P.-L., Yu, K.-W., & Lin, Y.-X. (2015). Influence of implementing inquiry-based instruction on science learning motivation and interest: A perspective of comparison. Procedia-social and behavioral sciences, 174, 1292-1299.
Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement motivation. Contemporary educational psychology, 25(1), 68-81.
Woolfolk, A., Winne, P. H., Perry, N., & Shapka, J. (2011). Educational psychology (5th Canadian edition). Newmarket, Ontario: Pearson Education Canada.
Yadigaroglu, M., & Demircioglu, G. (2012). The effect of activities based on 5e model on grade 10 students’ understanding of the gas concept. Procedia-social and behavioral sciences, 47, 634-637.