簡易檢索 / 詳目顯示

研究生: 王萱
Wang, Shiuan
論文名稱: 光激發鈣鈦礦量子點塔米電漿雷射
Optical excitation Perovskite Quantum Dot Tamm plasmon laser
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 49
中文關鍵詞: 金屬表面電漿效應光學塔米結構鈣鈦礦量子點分布式布拉格高反射鏡
英文關鍵詞: Metal surface plasma effect, optical Tamm structure, Perovskite quantum dots, distributed Bragg reflector
DOI URL: http://doi.org/10.6345/NTNU202001319
論文種類: 學術論文
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以金屬/布拉格反射鏡構成的塔米電漿結構取代常見的兩對高反射率的分散式布拉格反射鏡構成的共振腔,塔米電漿結構擁有較好的侷限性,得到高品質因數的共振腔,而高量子效率與高激子束縛能(38 − 60 meV)的全無機鈣鈦礦量子點非常適合嵌入在塔米電漿侷域性強電場的空間中,藉此探討在室溫下塔米電漿子與鈣鈦礦量子點激子耦合,產生極化子凝聚效應之研究。使用μ-PL量測TP雷射結構樣品(Ag /鈣鈦礦量子點 /DBR),發現入射光從頂部Ag方向進入,從光譜圖發現在激發雷射閾值約為5.16 MW / cm2,波長約530-540 奈米處有隨機雷射的作用,而在波長約550奈米的地方,觀察到樣品有極化子發射的現象,但是因為極化子與光子模態不相符,因此沒有產生極化子雷射的作用。另外入射光從底部DBR方向進入,只有觀察到激發雷射閾值為〜0.897 MW / cm2,波長約530-540 奈米處有隨機雷射的產生,其原因為雷射激發源的入射方向更改為樣品底部時,Ag /鈣鈦礦量子點界面處的局部電場激發太弱,以至於其強度不足以激發極化子發射,另外將DBR與鈣鈦礦量子點製作成OLED元件,從光電流分析其亮度較一般玻璃基板製作的OLED其亮度提高3.8 %

    In this thesis, we use Tamm plasmon structure composed of metal/Bragg mirrors in order to replace the resonant cavity which composed of two high reflectivity dispersed Bragg reflectors . The Tamm plasmon structure has good limitations can lead to a high Q-factor resonant cavity . The all-inorganic perovskite quantum dots provides high quantum efficiency and large binding energy (38 − 60 meV) . Which are very suitable for embedding into the space of strong localized electrical field of Tamm plasmon. This is to explore strong coupling between Tamm plasmon mode and perovskite excitons, and to discovery of new exciton-polariton effect. Use μ-PL to measure TP laser structure samples (Ag/Perovskite quantum dots/DBR), Incident direction of pumping laser, i.e. from the top side (Ag) of the sample. I observe several spectral spikes in the wavelength regime of 𝛌 =530-540 nm, due probably to the aggregation of perovskite QDs which scatters emitted photons to stimulate random lasing actions with pumping threshold of ~5.16 MW/cm2, also observe the possible polariton emissions at 𝛌 ~ 550 nm on our samples, but there is no polariton lasing actions due probably to the large detuning of exciton and photonics mode. When change the incident direction of pumping laser, i.e. from the bottom side (DBR) of the sample. Again, the random lasing actions with the pumping threshold of ~0.897 MW/cm2 can still be observed in 𝛌 =530-540 nm; however, there is no occurrence of polariton emission in 𝛌 ~ 550 nm. Because the localized electrical field at the Ag/perovskites QDs interface was weakly excited, and hence its intensity is insufficient to stimulate polariton emissions. In addition, DBR and perovskite quantum dots are made into OLED components, according to the analysis of photocurrent, its brightness is increased by 3.8% compared with that of OLED made of glass substrate.

    致謝 I 摘要 II Abstract III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 論文架構 3 第二章 基本原理及文獻回顧 4 2.1 分布式布拉格反射器(distributed Bragg reflector, DBR) 4 2.2 塔米電漿(Tamm plasmon,TP) 7 2.2.1 鈣鈦礦量子點 11 2.3 雷射 13 2.4 有機發光二極體(OLED) 14 第三章 模擬分析 15 3.1 模擬軟體簡介 15 3.2 模擬結果分析 15 3.2.1 模擬Tamm plasmon 結構 16 3.2.2 接近Ag與DBR界面SiO2的厚度變化 17 3.2.3 Ag不同厚度的模擬 18 3.2.4 Tamm plasmon結構變角度模擬 19 3.2.5 Tamm plasmon結構嵌入一層鈣鈦礦量子點 20 第四章 系統架構與實驗方法 22 4.1 實驗架構 22 4.2 製作Tamm plasmon 結構 23 4.3 合成鈣鈦礦量子點 24 4.3.1 光致發光(Photoluminescence, PL)原理與系統架構 27 4.3.2 原子力顯微鏡(Atomic Force Microscope, AFM) 28 4.4 穿透反射系統 29 4.5 微光致螢光 (Micro-Photoluminescence,μ-PL)系統 30 第五章 結果與討論 31 5.1 Tamm plasmon 結構分析 31 5.2 鈣鈦礦量子點光致發光分析 32 5.2.1 鈣鈦礦量子點表面成膜性與厚度分析 33 5.3 角度分辨反射率量測(光子模態的色散) 37 5.4 uPL 激發TP雷射結構量測 39 5.5 OLED元件分析 44 第六章 結論與未來展望 46 參考文獻 48

    [1]Barnes, William L., Alain Dereux, and Thomas W. Ebbesen. "Surface plasmon subwavelength optics." nature 424.6950 (2003): 824-830.
    [2]Kasprzak, Jacek, et al. "Bose–Einstein condensation of exciton polaritons." Nature 443.7110 (2006): 409-414.
    [3]Bajoni, Daniele, et al. "Polariton light-emitting diode in a GaAs-based microcavity." Physical Review B 77.11 (2008): 113303.
    [4]Schneider, Christian, et al. "An electrically pumped polariton laser." Nature 497.7449 (2013): 348-352.
    [5]Kavokin, A. V., I. A. Shelykh, and G. Malpuech. "Lossless interface modes at the boundary between two periodic dielectric structures." Physical Review B 72.23 (2005): 233102.
    [6]Kaliteevski, M., et al. "Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror." Physical Review B 76.16 (2007): 165415.
    [7]Symonds, C., et al. "Emission of Tamm plasmon/exciton polaritons." Applied Physics Letters 95.15 (2009): 151114.
    [8]Gazzano, O., et al. "Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission." Physical review letters 107.24 (2011): 247402.
    [9]Du, Wenna, et al. "Strong exciton–photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity." Acs Photonics 5.5 (2018): 2051-2059.
    [10]Kao, Tsung Sheng, et al. "Localized surface plasmon for enhanced lasing performance in solution-processed perovskites." Optics Express 24.18 (2016): 20696-20702.
    [11]Rakher, M. T., et al. "Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots." Physical review letters 102.9 (2009): 097403.
    [12]Pelton, Matthew, et al. "Efficient source of single photons: a single quantum dot in a micropost microcavity." Physical review letters 89.23 (2002): 233602.
    [13]Dousse, Adrien, et al. "Ultrabright source of entangled photon pairs." Nature 466.7303 (2010): 217-220.
    [14]Symonds, Clementine, et al. "Confined Tamm plasmon lasers." Nano letters 13.7 (2013): 3179-3184.
    [15]Lundt, Nils, et al. "Room-temperature Tamm-plasmon exciton-polaritons with a WSe 2 monolayer." Nature communications 7.1 (2016): 1-6.
    [16]Liu, Xiaoze, et al. "Strong light–matter coupling in two-dimensional atomic crystals." Nature Photonics 9.1 (2015): 30-34.
    [17]Protesescu, Loredana, et al. "Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut." Nano letters 15.6 (2015): 3692-3696.Sheppard, C.J.R. (1995). "Approximate calculation of the reflection coefficient from a stratified medium". doi:10.1088/0963-9659/4/5/018.
    [18]Zhang, Ting, et al. "Full-spectra hyperfluorescence cesium lead halide perovskite nanocrystals obtained by efficient halogen anion exchange using zinc halogenide salts." CrystEngComm 19.8 (2017): 1165-1171.
    [19]李正中。薄膜光學與鍍膜技術第八版。藝軒圖書出版社。2016

    無法下載圖示 本全文未授權公開
    QR CODE