簡易檢索 / 詳目顯示

研究生: 林士傑
Lin, Shih-Chieh
論文名稱: 渦旋光對低維度材料與磁性薄膜異質結構之光電響應增益探討
Twisted light enhanced photoresponse in heterostructures of low-dimensional material and magnetic thin film
指導教授: 藍彥文
Lan, Yann-Wen
口試委員: 藍彥文
Lan, Yann-Wen
陸亭樺
Lu, Ting-Hua
呂俊毅
Lu, Chun-I
口試日期: 2023/07/26
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 59
中文關鍵詞: 渦旋光光電響應磁性材料低微度材料半導體場效電晶體MoS2異質結構
英文關鍵詞: twisted light, photoresponse, magnetic material, low-dimension material, semiconductor, MoS2, heterostructure, FET
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202400682
論文種類: 學術論文
相關次數: 點閱:44下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將藉由將拉蓋爾-高斯(Laguerre-Gaussian, LG)光束照射在磁性材料與低維度材料的異質結構上,以探討帶有軌道角動量的渦旋光對其所產生的效應。由於LG光束具有特殊的電場分佈,藉由理論推測可能會與材料表面的電子海進行交互作用進而產生環形電流及垂直磁場。在材料的選擇上我們使用鈷作為鐵磁性材料,而低維度材料是選用具有相近能隙的半導體材料:MoS2及C60來進行探討。
    首先我們探討Co與MoS2的異質結構,由於在先前的研究中發現在Co/MoS2系統中鈷原子會使MoS2具有特殊的磁各異向性,提供了Co/MoS2異質結構與LG光束間交互作用的可能性。再來我們試著於鈷薄膜中摻入C60薄膜,由先前的研究指出Co與C60會有電子交換行為使得C60會帶有磁性,因此我們便以Co/C60/Co/MoS2異質結構來探討此結構與Co/MoS2異質結構間的差異,進一步研究鐵磁薄膜與低維度材料異質結構對LG光束的響應。最後,我們試著改變鐵磁材料與低維度材料的結構,由層狀堆疊改為合金的結構,探討Co-C60合金薄膜對渦旋光間的響應。
    研究結果顯示在二硫化鉬上透過蒸鍍法鍍上一層鈷薄膜後,會使得該元件對LG光的光電響應更為明顯;另外在Co/C60/Co/MoS2異質結構上發現在鈷薄膜中摻入C60薄膜的多層堆疊結構有著更顯著的光電響應,並且對LG光束也有著更強的反應。另外,在Co-C60合金的實驗中發現,對其照射渦旋光時此合金薄膜的阻值會隨著軌道角動量增加而上升。在物理機制的探討中,我們藉由從電子自旋的疊加態分佈,去探討LG光束所造成的外加磁場對光電響應的影響。

    This study aims to investigate the effects of Laguerre-Gaussian (LG) beams with orbital angular momentum on heterostructures of magnetic thin films and low-dimensional materials. Firstly, the unique electric field distribution of LG beams suggests a possible interaction with the electron sea on the material's surface, leading to the generation of circular currents and perpendicular magnetic fields. In this experiment, molybdenum disulfide (MoS2) is chosen as the research subject for its excellent carrier conductivity and direct bandgap, which results in significant photoresponse. Recent studies have shown that the interface between MoS2 and cobalt atoms exhibits magnetic anisotropy due to the coupling between cobalt and sulfur atoms in MoS2, providing the potential for interaction with LG beams in Co/MoS2 heterostructures. Additionally, it has been discovered that C60 exhibits electron exchange interaction with cobalt, making C60 ferromagnetic. Moreover, the bandgap of C60 molecules is close to that of MoS2, suggesting that it can be excited by light with similar wavelengths. Therefore, we aim to study the influence of LG beams on the electrical properties of Co-C60 composite structures, as well as the response of Co/C60/Co/MoS2 heterostructures to LG beams. The research results demonstrate that depositing a cobalt thin film onto MoS2 enhances the photoresponse to LG light. Furthermore, it is found that introducing C60 thin films into the cobalt film stack exhibits a more significant photoresponse and a stronger reaction to LG beams. Finally, this study proposes possible physical mechanisms by exploring the impact of the external magnetic field induced by LG beams on the photoresponse based on the superposition distribution of electron spins.

    摘要 I Abstract II 致謝 III Table of Contents IV List of Tables VI List of Figures VII 第一章 研究背景與實驗動機 1 1-1 簡介 1 1-2 研究動機 2 第二章 實驗原理與裝置 3 2-1 低維度材料 3 2-1-1 二硫化鉬(MoS2) 3 2-1-2 巴克明斯特富勒烯(Buckminsterfullerene, C60) 4 2-2 磁性材料 5 2-2-1 鐵磁性材料 5 2-2-2 磁各向異性(Magnetic Anisotropy, MA) 7 2-3 磁光柯爾效應(Magneto-Optical Kerr Effect, MOKE) 9 2-4 半導體之光電效應 12 2-5 拉蓋爾-高斯(Laguerre-Gaussian)光束 15 2-6 儀器設備 20 2-6-1 空間光調製器(Spatial Light Modulator, SLM) 20 2-6-2 磁光柯爾顯微鏡(Magneto-Optical Kerr Microscopy) 22 2-6-3 電子束曝光微影系統 25 2-6-4 LED曝光微影系統 26 2-6-5 熱蒸鍍系統(Thermal evaporation system) 27 2-6-6 超高真空電子束熱蒸鍍系統(UHV e-beam evaporation system) 28 2-6-7 化學氣相沉積法(Chemical vapor deposition, CVD) 29 第三章 實驗結果與討論 30 3-1 樣品介紹 30 3-2 實驗程序 31 3-3 渦漩光對鐵磁薄膜與MoS2異質結構FET之效應 33 3-3-1 渦漩光對MoS2 FET之效應 33 3-3-2 渦旋光對Co/MoS2 FET系統之效應 35 3-3-3 渦旋光對Co/C60/Co/MoS2 FET系統之效應 41 3-3-4 討論 47 3-4 渦旋光對低微度材料與鐵磁材料的複合薄膜之效應 51 3-4-1 Co-C60薄膜照射渦旋光的電性變化 51 3-4-2 討論 52 第四章 結論與未來展望 54 4-1 結論 54 4-2 未來實驗方向建議 56 參考文獻 57

    Simbulan, K. B. et al. Twisted Light-Enhanced Photovoltaic Effect. ACS nano 15, 14822-14829 (2021).
    Lu, C.-I. et al. Spontaneously induced magnetic anisotropy in an ultrathin Co/MoS2 heterojunction. Nanoscale horizons 5, 1058-1064 (2020).
    王祥安. 在二維材料系統和層間交換耦合系統中使用渦旋光改變其磁各向異性, 國立臺灣師範大學, (2020).
    Moorsom, T. et al. Spin-polarized electron transfer in ferromagnet/C60 interfaces. Physical Review B 90, 125311 (2014).
    徐健真. 有機磁性半導體—富勒烯與鈷的交互作用探討 碩士 thesis, 國立臺灣師範大學, (2022).
    Li, X. & Zhu, H. Two-dimensional MoS2: Properties, preparation, and applications. Journal of Materiomics 1, 33-44 (2015).
    The Nobel Prize in Chemistry 1996, <https://www.nobelprize.org/prizes/chemistry/1996/press-release/> (
    Lin, R. et al. Organic spin-valves based on fullerene C60. Synthetic metals 161, 553-557 (2011).
    Jarrett, C., Pichler, K., Newbould, R. & Friend, R. Transport studies in C60 and C60/C70 thin films using metal-insulator-semiconductor field-effect transistors. Synthetic metals 77, 35-38 (1996).
    Frankevich, E., Maruyama, Y. & Ogata, H. Mobility of charge carriers in vapor-phase grown C60 single crystal. Chemical physics letters 214, 39-44 (1993).
    Fourmental, C. et al. Evidence of a C60/Co interface reconstruction and its influence on magnetic properties. Physical Review B 104, 235413 (2021).
    Pan, Y. et al. Advances in photocatalysis based on fullerene C60 and its derivatives: Properties, mechanism, synthesis, and applications. Applied Catalysis B: Environmental 265, 118579 (2020).
    Cullity, B. D. & Graham, C. D. Introduction to magnetic materials. (John Wiley & Sons, 2011).
    Weinberger, P. John Kerr and his effects found in 1877 and 1878. Philosophical Magazine Letters 88, 897-907 (2008).
    Qiu, Z. & Bader, S. D. Surface magneto-optic Kerr effect. Review of Scientific Instruments 71, 1243-1255 (2000).
    Grundmann, M. Physics of semiconductors. Vol. 11 (Springer, 2010).
    Sze, S. M., Li, Y. & Ng, K. K. Physics of semiconductor devices. (John wiley & sons, 2021).
    Singh, J. Electronic and optoelectronic properties of semiconductor structures. (Cambridge University Press, 2007).
    石正瑜. 矽摻硼之阻擋雜質能帶紅外線偵測器之研究 碩士 thesis, 國立交通大學, (2009).
    Kim, Y., Kim, J., Kim, H. M. & Jang, J. Quantum‐Dots Photosensor with Wide Bandgap P‐Type and N‐Type Oxide Semiconductors for High Detectivity and Responsivity. Advanced Materials Technologies 5, 1900857 (2020).
    Gonzalez Marin, J. F., Unuchek, D., Watanabe, K., Taniguchi, T. & Kis, A. MoS2 photodetectors integrated with photonic circuits. npj 2D Materials and Applications 3, 14 (2019).
    Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nature nanotechnology 8, 497-501 (2013).
    Klots, A. et al. Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Scientific reports 4, 6608 (2014).
    Yin, Z. et al. Single-layer MoS2 phototransistors. ACS nano 6, 74-80 (2012).
    Choi, W. et al. High‐detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Advanced materials 24, 5832-5836 (2012).
    Schneider, D. S. et al. Highly responsive flexible photodetectors based on MOVPE grown uniform few-layer MoS2. Acs Photonics 7, 1388-1395 (2020).
    Hecht, E. Optics, Global Edition. (Pearson Education, 2016).
    Bliokh, K. Y. et al. Theory and applications of free-electron vortex states. Physics Reports 690, 1-70 (2017).
    Willner, A. E., Pang, K., Song, H., Zou, K. & Zhou, H. Orbital angular momentum of light for communications. Applied Physics Reviews 8, 041312 (2021).
    Arlt, J., Hitomi, T. & Dholakia, K. Atom guiding along Laguerre-Gaussian and Bessel light beams. Applied Physics B 71, 549-554 (2000).
    Vuillemin, J. J. De Haas-van Alphen effect and Fermi surface in palladium. Physical Review 144, 396 (1966).
    Lu, C.-I. et al. Twisted light induced magnetic anisotropy changes in an interlayer exchange coupling system. Nanoscale Horizons 6, 462-467 (2021).
    Zhao, Z., Xiao, Z., Zhuang, Y., Zhang, H. & Zhao, H. An interferometric method for local phase modulation calibration of LC-SLM using self-generated phase grating. Review of Scientific Instruments 89, 083116 (2018).
    Ji, Q., Zhang, Y., Zhang, Y. & Liu, Z. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chemical Society Reviews 44, 2587-2602 (2015).
    Lin, Z. et al. Improvement of photoelectric properties of MoS2/WS2 heterostructure photodetector with interlayer of Au nanoparticles. Optical Materials 108, 110191 (2020).
    Li, Y. et al. Superior plasmonic photodetectors based on Au@ MoS2 core–shell heterostructures. ACS nano 11, 10321-10329 (2017).
    Wang, G. et al. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface plasmon resonance. Advanced Functional Materials 28, 1800339 (2018).
    Zhai, X. et al. Enhanced optoelectronic performance of CVD-grown metal–semiconductor NiTe2/MoS2 heterostructures. ACS applied materials & interfaces 12, 24093-24101 (2020).

    下載圖示
    QR CODE