研究生: |
李政霖 Cheng-Lin Lee |
---|---|
論文名稱: |
移動機器人之二級式區間第二類模糊控制 Two-stage Interval Type-2 Fuzzy Control of Mobile Robots |
指導教授: |
呂藝光
Leu, Yih-Guang |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 二級式區間第二類模糊系統 、控制器 、移動機器人 |
英文關鍵詞: | two-stage interval type-2 fuzzy logic control, mobile robot, omnidirectional mobile system |
論文種類: | 學術論文 |
相關次數: | 點閱:260 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般而言,機器人在未知環境中,為了可以自主導航及完成工作任務,通常需要使用大量的感測器來感測環境變化。一般的傳統模糊邏輯控制器會因感測器的數量過多而造成模糊規則過於龐大,不利於即時控制。若使用二級式模糊邏輯控制器將機器人動作做切割,當動作較單純時,可利用少量的感測器完成控制,讓模糊規則減少,以順利完成即時控制。但此一設計在即時控制時,卻容易受感測器或環境的雜訊影響,增加控制難度,因此本文提出二級式區間第二類模糊控制器,利用區間第二類模糊邏輯可以涵蓋較多不確定因素之特性,減低雜訊產生時對控制器造成的影響,使機器人控制可以更加流暢。
本文整合雷射測距儀、電子羅盤、視覺系統等感測器,使用全方向輪系統移動機器人來驗證使用二級式區間第二類模糊設計控制器,可以達到控制機器人的效能,並可降低雜訊帶來的影響。
For autonomous guidance in an unknown environment, a mobile robot generally requires a large number of sensors. The traditional fuzzy control methods for mobile robots with a numerous number of sensors are unfavorable to control immediately because the design of the fuzzy rules becomes very complicated. If a fuzzy system for mobile robots is divided into many stages, the number of the fuzzy rules will reduce largely. Moreover, environment disturbances, sensor noises and uncertain factors exist together. These factors affect the control precision and performance of mobile robots. Therefore, this thesis uses a method of two-stage interval type-2 fuzzy logic control in order to more smoothly implement on mobile robots because the influence of the uncertain factors is diminished by type-2 fuzzy logic system.
To verify the effectiveness and applicability of the proposed method, we design and implement a mobile robot, and the main structure of the mobile robot includes an omnidirectional mobile system, one laser sensor, one electronic compass sensor, one vision sensor, and so forth.
[1] International Federation of Robotics,http://www.ifr.org/
[2] A. Saffiotti, “The uses of fuzzy logic in autonomous robot navigation,” J. Soft Comput., vol. 1, no. 4, pp. 180–197, 1997
[3] T. Fukuda and N. Kubota, “An intelligent robotic system based on fuzzy approach,” Proc. IEEE, vol. 87, pp. 1448–1470, Aug. 1999.
[4] H. Hagras, V. Callaghan, and M. Colley, “Prototyping design and learning in outdoor mobile robots operating in unstructured outdoor environments,” IEEE Robot. Automat. Mag., vol. 8, no. 3, pp. 53–69, Sept. 2001.
[5] H. Hagras, M. Colley, and V. Callaghan, “Learning and adaptation of an intelligent mobile robot navigator operating in unstructured environments based on a novel online fuzzy-genetic system,” J. Fuzzy Sets Syst., vol. 141, no. 1, pp. 107–160, Jan. 2004.
[6] F. Hoffmann and G. Pfister, “Evolutionary design of a fuzzy knowledge base for a mobile robot,” Int. J. Approx. Reason., vol. 17, no. 4, pp.447–469, 1997.
[7] R. John, “Type 2 fuzzy sets: An appraisal of theory and applications,” Int. J. Uncertainty, Fuzziness, Knowledge Based Syst., vol. 6, no. 6, pp. 563–576, 1998.
[8] J. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Upper Saddle River, NJ: Prentice-Hall, 2001.
[9] J. Mendel and R. John, “Type-2 fuzzy sets made simple,” IEEE Trans. Fuzzy Syst., vol. 10, pp. 117–127, Apr. 2002.
[10] G. V. S. Raju, J. Zhou, and R. A. Kisner, "Hierarchical fuzzy control," Int. J. Contr., vol. 54, no. 5, pp. 1201–1216, 1991.
[11] R. C. Arkin. "Motor schema based navigation for a mobile robot," In Procs of the IEEE Int. Conf. on Robotics and Automation, pp. 264-271, 1987.
[12] R. A. Brooks. "A robust layered control system for a mobile robot," IEEE Journal of Robotics and Automation, pp.14-23, 1986.
[13] D. W. Payton."An architecture for reflexive autonomous vehicle control," In Procs. of the IEEE Int.Conf. on Robotics and Automatzon, pp.1838-1845, San Francisco, CA, 1986.
[14] L. A. Zadeh, "Fuzzy Sets," Information and Control, vol. 8, pp. 338-353, June 1965.
[15] 王文俊,“認識 Fuzzy-第二版“,全華科技圖書出版社,Oct. 1997。
[16] 汪惠健,“模糊理論與應用“,台灣培生教育出版股份有限公司,Nov. 2006。
[17] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning—I,” Inf. Sci., vol. 8, no. 3, pp. 199–249, 1975.
[18] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: Theory and design, ”IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 535–550, Oct. 2000.
[19] J. M. Mendel, R. I. B. John, and F. Liu, “Interval type-2 fuzzy logic systems made simple,” IEEE Trans. Fuzzy Syst., vol. 14, no. 6, pp. 808–821, Dec. 2006.
[20] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Inf. Sci., vol. 132, no. 1, pp. 195–220, Feb. 2001.
[21] Karnik N.N, Mendel J.M., Liang Q. “Type-2 Fuzzy Logic Systems,” Trans. on Fuzzy Syst., vol. 7, no. 6 Dec. 1999.
[22] http://yschen.ee.yzu.edu.tw/Courses/Micro8051Ex/981/MPC82G516_ICE_TOOL_UserManual_V10.pdf
[23] http://www.playrobot.com/motro_driver/files/IG-52GM.pdf
[24] http://www.parallax.com/Portals/0/Downloads/docs/prod/motors/HB-25MotorController-V1.2.pdf
[25] http://www.hokuyo-aut.jp/02sensor/07scanner/download/data/URG-04LX_spec.pdf
[26] http://www.hokuyo-aut.jp/02sensor/07scanner/download/data/URG_SCIP20.pdf
[27] M. Wada, "Virtual Link Model for Redundantly Actuated Holonomic Omnidirectional Mobile Robots", Proceedings of the 2006 IEEE International Conference on Robotics and Automation, pp. 3202-3207, May 2006.
[28] http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Missiles-Munitions/HMC6343.pdf
[29] Bonarini, “Anytime learning and adaptation of hierarchical fuzzy logic behaviors,” Adapt. Behavior J., vol. 5, no. 3–4, pp. 281–315, 1997
[30] V. Matellan, C. Fernandez, and J. Molina, “Genetic learning for fuzzy reactive controllers,” J. Robot. Auton. Syst., vol. 25, pp. 33–41, 1998.
[31] B.C. Min, M.S. Lee, and D. Kim, “Fuzzy logic path planner and motion controller by evolutionary programming for mobile robots,” International Journal of Fuzzy Systems, vol.11, no.3, pp.154-163, 2009.
[32] C.C. Wong, C.T. Cheng, K.H. Huang, and Y.T. Yang, “Fuzzy control of humanoid robot for obstacle avoidance,” International Journal of Fuzzy Systems vol.10, no.1, pp.261-270, 2008.
[33] Safiotti, A, “Fuzzy logic in autonomous robotics: Behavior coordination,” in Proc.6th IEEE Int. Conf. Fuzzy Systems, Barcelona, Spain, , pp.573–578, 1997.
[34] E. Tunstel, T. Lippincott, and M. Jamshidi, “Behavior hierarchy for autonomous mobile robots: Fuzzy behavior modulation and evolution,” Int.J. Intell. Automat. Soft Comput., vol. 3, no. 1, pp. 37–49, 1997.
[35] 高嘉良(2010):移動機器人之階層模糊控制,國立台灣師範大學工業教育研究所碩士論文。
[36] Hani Hagras, Victor Callaghan, and Martin Colley “Outdoor mobile robot learning and adaptation,” IEEE Robotics & Automation Magazine, vol. 8, no. 1 , pp. 53–69, no. 3, September 2001.
[37] Hani A. Hagras “A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots,” IEEE transactions on fuzzy systems, vol. 12, no. 4, August 2004