簡易檢索 / 詳目顯示

研究生: 蔣兆嶸
Chaing, Chao-Jung
論文名稱: 電磁驅動之複合式高速衝印系統開發應用於高密度非球面精微模坑陣列成型研究
Development of a hybrid high-speed stamping system based on electromagnetic drive for forming a high-density aspheric microdimple array
指導教授: 陳順同
Chen, Shun-Tong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 199
中文關鍵詞: 電磁驅動高速衝印系統衝擊頭非球面精微模坑陣列
英文關鍵詞: Electromagnetic drive, High speed stamping system, Stamping tool, Aspherical micro-dimple array
DOI URL: http://doi.org/10.6345/NTNU201901138
論文種類: 學術論文
相關次數: 點閱:133下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發一「電磁驅動」往復式進給模組,規劃應用於複合式高速衝印系統,以便快速製作「高密度非球面精微模坑陣列」。研究透過電流磁效應原理,以家用交流電源驅動電磁驅動機構,透由交流電交變特性,使電磁驅動機構的磁極隨時間交變,作動頻率達120 Hz,可獲致高速往復運動目的。實驗以此高速往復運動,驅使電磁驅動機構的衝擊頭對材料表面進行高速衝印,材料經彈性及塑性變形過程,模坑表面產生應變硬化,晶粒組織變得更緻密,能有效改善模坑表面疲勞強度及耐磨耗性,達非球面模坑製作目的。衝擊頭表面以含硼聚晶鑽石(BD-PCD, Boron doped polycrystalline diamond)及碳化鎢為材料,並於開發的線上研磨機構,進行非球面研磨製作,其峰谷差值(P-V)分別達11.78 μm及6.46 μm,表面粗糙度為Ra 0.78 μm與Ra 0.46 μm,經高速衝印結果顯示,成型的微模坑表面粗糙度分別可達Ra 0.77 μm與Ra 0.35 μm。實驗發現,不同的模仁材料、電磁驅動機構彈簧常數及衝擊頭深度位置等三因素,影響模坑的深度。電磁驅動機構以4100匝設計,當模仁以退火鋁合金為材料,彈簧常數2.7 N/mm,及衝擊頭深度位置在26 μm時,所創造出的衝擊力,能使非球面模坑深度達15 μm。在工件進給速度方面,實驗也發現,模仁在2160 mm/min高速移動條件下,模坑能獲得最高的幾何形狀。經實驗證實,於86 mm2面積內,高速衝印成型完整的400顆高密度非球面微模坑,時間僅需3.3秒,且具高一致性,模坑與衝擊頭重疊率可達95%以上,證實本研究提出的電磁驅動往復式進給模組,能達高速、高密度及高一致性衝印成型的能力。

    This study aims to develop an "electromagnetic drive" reciprocating feed module, planning for composite high-speed photofinishing systems, in order to quickly create " high-density aspheric micro-dimple array." Permeation current magnetic effect principle to household AC power source driving the electromagnetic drive means, by alternating current through an alternating characteristic so that the poles alternating electromagnetic driving mechanism over time, the actuation frequency of 120 Hz, high-speed reciprocating motion actuator available object. In this experiment reciprocated at high speed, driven by an electromagnetic drive mechanism of the stamping tool for high-speed stamping surface of the material, and the elastic material is plastic deformation, the dimpled surface of the mold to produce a strain hardening, grain structure becomes denser, can effectively improve the mode pits surface fatigue strength and wear resistance, of molded aspheric dimple production purposes. The stamping tool to BD-PCD and tungsten carbide material, and grinding mechanism developed online, making aspheric surface polished, which valley difference (PV) of respectively 11.78 μm and 6.46 μm, a surface roughness of Ra 0.78 μm and Ra 0.46 μm, results show that by high-speed stamping, micro-molding die hole up to the surface roughness Ra 0.77 μm, respectively, and Ra 0.35 μm. It was found that three different factors mold core material, the spring constant of the electromagnetic driving mechanism and the depth position of the stamping tool and the like, affect the depth of the dimple. The electromagnetic driving mechanism designed to 4100 turns, when the annealing mold core aluminum alloy material, the spring constant of 2.7 N/mm, and the depth position at stamping tool 26 μm, the impact created, can make the dimple depth of an aspheric mold 15 μm. In the workpiece feed speed, the experiment also found that the mold core at 2160 mm/min high-speed movement conditions, the highest figure hole geometry can be obtained. Confirmed by experiments, 8x6 mm2 in area, forming a complete high-speed stamping of high-density 400 molded aspheric micro dimples, takes only 3.3 seconds, and having a high consistency, the moil mode dimple overlap ratio of 95 %, this study presents proven electromagnetic drive reciprocating feed module, capacity can reach high speed, high density and high consistency of stamp molding.

    摘要 i Abstract ii 誌謝 iii 目錄 v 表目錄 x 圖目錄 xii 符號說明 xix 第一章 序論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 單晶及聚晶鑽石加工技術 3 1.2.2 微透鏡陣列加工技術 7 1.2.3 放電成形技術 12 1.2.4 微結構陣列之高頻加工技術 16 1.2.5 精微工具機發展趨勢 25 1.3 研究動機 26 1.4 研究目的 27 1.5 研究方法 27 第二章 實驗原理 30 2.1 電磁驅動原理 30 2.1.1 電流磁效應 30 2.1.2 交流電電源 32 2.1.3 電磁鐵作動原理 35 2.1.4 彈簧復歸原理 38 2.2 金屬衝印成型原理 39 2.2.1 塑性加工應用 39 2.2.2 彈性變形與塑性變形 42 2.2.3 差排理論 45 2.2.4 動量與衝量 47 2.3 線切割放電加工 49 2.4 精密研磨原理 50 2.5 非球面透鏡原理 52 2.5.1 非球面透鏡設計 53 2.5.2 非球面輪廓設計 54 第三章 實驗設備與材料 56 3.1 製造設備與實驗設備 56 3.1.1 CNC立式綜合加工機 56 3.1.2 CNC線切割放電加工機 57 3.1.3 精密研磨拋光機 57 3.1.4 高速研磨主軸選用 58 3.2 量測設備 59 3.2.1 工具顯微鏡 59 3.2.2 掃描式電子顯微鏡 60 3.2.3 雷射共軛焦顯微鏡 61 3.2.4 線上CCD攝影機檢測設備 62 3.2.5 渦電流感測器 62 3.3 電磁驅動機構材料與實驗材料 63 3.3.1 矽鋼片 63 3.3.2 碳化鎢 64 3.3.3 含硼聚晶鑽石 65 3.3.4 黃銅線 66 3.3.5 鋁合金6061-T6與6061-O 66 3.3.6 黃銅 67 第四章 實驗方法與設計 69 4.1 電磁驅動機構設計 70 4.1.1 鐵芯造型尺寸設計 72 4.1.2 矽鋼片取向性 74 4.1.3 矽鋼片鐵損值 75 4.1.4 矽鋼片硬度 77 4.2往復式衝印模組設計 78 4.2.1 衝頭軸驅動設計 78 4.2.2 彈簧選用 79 4.2.3 位移平台選用 81 4.2.4 時規輪與時規皮帶 82 4.2.5 衝印行程控制設計 83 4.2.6 V形座導引機構設計 85 4.3 複合式高速衝印系統設計與開發 87 4.3.1 BD-PCD磨輪設計 87 4.3.2 複合式高速衝印系統分析 89 4.3.3 複合式高速衝印系統組裝校正 92 4.4 往復式衝印模組精度分析 94 4.4.1 衝頭軸衝印距離與作動頻率重現性測試 94 4.4.2 衝頭軸偏轉度誤差測試 99 4.4.3 衝頭軸衝擊力重現性測試 101 第五章 實驗 103 5.1 非球面含硼聚晶鑽石衝擊頭旋轉放電成形實驗 103 5.1.1 衝擊頭旋轉放電成形路徑規劃 103 5.1.2 衝擊頭之旋轉放電成形實驗 104 5.1.3 衝擊頭之表面粗糙度與表面石墨化 107 5.2 非球面含硼聚晶鑽石衝擊頭研磨實驗 108 5.2.1 研磨速度之實驗規劃 109 5.2.2 BD-PCD衝擊頭研磨加工 111 5.2.3 碳化鎢衝擊頭研磨加工 115 5.2.4 衝擊頭材料比較 120 5.2.5 碳化鎢衝擊頭拋光加工 121 5.3 高密度非球面微模坑陣列之高速衝印實驗 126 5.3.1 快速衝印成型實驗規劃 127 5.3.2 模仁移動速度對非球面模坑完整性影響 131 5.4 影響衝印精度的製程因子 136 5.4.1 模仁材料對成型深度的影響 137 5.4.2 彈簧常數對成形深度的影響 143 5.4.3 Z軸深度對成形深度的影響 150 第六章 高密度非球面精微模坑陣列模仁驗證 158 6.1 高密度非球面微模坑結構陣列創成實驗 158 6.2 高密度非球面微模坑結構幾何形狀分析 160 6.3 高密度非球面微模坑結構陣列表面粗糙度分析 169 6.4 高密度非球面微模坑結構陣列組織密度分析 172 6.5衝擊頭表面形貌探討 174 第七章 結論與研究成果 177 7.1結論 177 7.1.1 本研究成果 178 7.1.2 本研究貢獻 179 7.2 未來展望 180 參考文獻 182 附錄 193 A.三軸位移載台振動測試(三軸致能,磨輪轉動) 193 B.微模坑表面粗糙度量測 195 C.非球面透鏡輪廓CNC路徑 199

    一、中文文獻
    陳建智,2018,避熱式旋轉放電法於針尖1μm之單晶鑽石探針高效成形研究,國立臺灣師範大學
    周威宇,2017,雙曲軸異相位平衡驅動機構開發應用於高密度微光學結構陣列快速成形研究,國立臺灣師範大學
    瑞士SARIX,https://www.sarix.com/
    德國KUGLER,https://www.kugler-precision.com/
    美國Precitech,https://www.precitech.com/
    美國Moore Nanotechnology System,http://www.nanotechsys.com/
    沅晨工業有限公司,各國電壓頻率表,http://www.yncnpump.com.tw/
    台灣電力公司,台電供電系統簡介,https://www.taipower.com.tw/
    田民波,2015,材料學概論,五南圖書股份有限公司,pp.138
    機械技術雜誌編輯部,2000,二十一世紀的顯學微機電系統(四) - 微放電精密加工,機械技術雜誌,pp.220-22249.
    陳順同,2018,超精密加工講義,國立臺灣師範大學
    林柏聰,2016,精微錯置式切削系統開發應用於精微菲涅爾透鏡製作,國立臺灣師範大學
    台中精機股份有限公司,立式加工機Vcenter55/70,http://www.or.com.tw/
    慶鴻機電工業股份有限公司,線切割機CW640S1,http://www.chmer.com/
    金慶和企業有限公司,精密研磨拋光機,http://www.hchtest.com.tw/series15.html
    NAKANISHI, Micro-grinder, Motors & Spindles, 08/09 Edition, 2008. pp.22.
    NAKANISHI, Micro-grinder, Motors & Spindles, 08/09 Edition, 2008. pp.26.
    漢磊精密科技有限公司,工具顯微鏡,http://www.aixon.com.tw/
    JEOL,Scanning Electron Microscope,JSE-6360,http://www.jeol.co.jp/en/
    OLYMPUS,雷射共軛焦顯微鏡OLS4100,https://www.olympus.com.tw/
    The Imagine Source,DMK41UA02,https://www.theimagingsource.tw/
    三聯科技股份有限公司,渦電流位移感測器,http://www.sanlien.com/web/homepage.nsf/foundationview/952A194EC9D7428A482573DB00099B64
    ELECTRICAL STEEL SHEETS,新日本製鐵株式會社,https://www.nssmc.com/product/catalog_download/pdf/D003jec.pdf
    宋健民,2000,超硬材料,全華科技圖書股份有限公司,Ch2.
    FACT江信有限公司,含硼聚晶鑽石,http://www.factdiamond.com/
    元祥金屬工業股份有限公司,黃銅線,http://www.yhm.com.tw
    維信鋁合金有限公司,鋁合金(Al 6061-T6),http://www.wsal.com.tw/ugC_Support6061.asp
    MatWeb, Brass(C3600), http://www.matweb.com
    台灣三住,圓線彈簧,http://tw.misumi-ec.com/
    台灣三住,手動平台,http://tw.misumi-ec.com/
    台灣三住,時規皮帶與時規輪,http://tw.misumi-ec.com/
    吳明勳,2009,機構學,全華圖書股份有限公司,pp.11-3.
    https://www.aerotech.com/product-catalog/stages/linear-x-y-stages/ant130xy.aspx
    https://www.aerotech.com/product-catalog/stages/linear-stage/ant130l.aspx
    黃暐仁,2012,大負斜角精微聚晶鑽石球型研削工具機開發與微小碳化鎢模仁加工研究,國立臺灣師範大學
    郭程,2014,複雜迴轉結構的微細電火花線切割加工技術研究,哈爾濱工業大學
    施勝禹,2016,精微CNC鑽石研磨機開發應用於表面粗糙度量測之單晶鑽石探針製作研究,國立臺灣師範大學

    二、英文文獻
    Kanaujia P.K., Bulbul A., Parmar V., Prakash G.V., 2017. Ultrafast laser based hybrid methodology of silicon microstructure fabrication for optoelectronic applications, Applied Surface Science, vol.420, pp.63-69.
    Tang M., Shim V., Pan Z.Y., Choo Y.S., Hong M.H., 2011. Laser Ablation of Metal Substrates for Super-hydrophobic Effect, JLMN-Journal of Laser Micro/Nanoengineering, vol.6, no.1, pp.6-9.
    Fang F.Z., Zhang X.D., Weckenmann A., Zhang G.X., Evans C., 2013. Manufacturing and measurement of freeform optics, CIRP Annals, vol.62, no.2, pp.823-846.
    Chen X., Qu N., Li H., Xu Z., 2016. Electrochemical micromachining of micro-dimple arrays using a polydimethylsiloxane (PDMS) mask, Journal of Materials Processing Technology, vol.229, pp.102-110.
    Kawasegi N., Ozaki K., Morita N., Nishimura K., Sasaoka H., 2014. Single-crystal diamond tools formed using a focused ion beam: Tool life enhancement via heat treatment, Diamond and Related Materials, vol.49, pp.14-18.
    Sharma A., Jain V., Gupta D., 2018. Characterization of chipping and tool wear during drilling of float glass using rotary ultrasonic machining, Measurement, vol.128, pp.254-263.
    Zhang Z., Peng H., Yan J., 2013. Micro-cutting characteristics of EDM fabricated high-precision polycrystalline diamond tools, International Journal of Machine Tools & Manufacture, vol.65, pp.99-106.
    Lim C.S., Hong M.H., Lin Y., Chen G.X., Senthil Kumar A., Rahman M., Tan L.S., Fuh J.Y.H., Lim G.C., 2007. Sub-micron surface patterning by laser irradiation through microlens arrays, Journal of Materials Processing Technology, vol.192-193, pp.328-333.
    Patel D., Jain V.K., Ramkumar J., 2015. Surface Texturing for Inducing Hydrophobicity, Manufacturing Science Lab, vol.15, no.1, pp.46-53
    Phan N., Moronuki N., 2018. Combination of silicon microstructures and porous cellulose nanofiber structures to improve liquid-infused-type self-cleaning function, Precision Engineering, vol.51, pp.638-646.
    Goel S., Luo X., Agrawal A., Reuben R.L., 2015. Diamond machining of silicon: A review of advances in molecular dynamics simulation, International Journal of Machine Tools and Manufacture, vol.88, pp.131-164.
    Freeman AR., 2003. Array-based microenvironment for cell culturing, cell monitoring and drug-target validation. U.S. Patent 6653124 B1, nov., 25.
    Saito Y., Yabu H., 2015. Bio-inspired low frictional surfaces having micro-dimple arrays prepared with honeycomb patterned porous films as wet etching masks, Langmuir, vol.31, no.3, pp.959-963.
    Zhang S.J., To S., Zhu Z.W., Zhang G.Q., 2016. A review of fly cutting applied to surface generation in ultra-precision machining, International Journal of Machine Tools and Manufacture, vol.103, pp.13-27.
    Kawasegi N., Ozaki K., Morita N., Nishimura K., Yamaguchi M., 2017. Development and machining performance of a textured diamond cutting tool fabricated with a focused ion beam and heat treatment, Precision Engineering, vol.47, pp.311-320.
    Takayama N., Yan J., 2017. Mechanisms of micro-groove formation on single-crystal diamond by a nanosecond pulsed laser, Journal of Materials Processing Technology, vol.243, pp.299-311.
    Takayama N., Ishizuka J., Yan J., 2018. Microgrooving of a single-crystal diamond tool using a picosecond pulsed laser and some cutting tests, Precision Engineering, vol.53, pp.252-262.
    Kawasegi N., Yamaguchi M., Kozu T., Morita N., Nishimura K., 2017. Sub-micrometer scale patterning on single-crystal diamond surface using focused ion beam and deep ultraviolet laser irradiations, Precision Engineering, vol.50, pp.337-343.
    Odake S., Ohfuji, H., Okuchi T., Kagi H., Sumiya H.,Irifune T., 2009. Pulsed laser processing of nano-polycrystalline diamond: A comparative study with single crystal diamond, Diamond and Related Materials, vol.18, no.5-8, pp.877-880.
    Huang C.Y., Hsiao W.T., Huang K.C., Chang K.S., Chou H.Y.,Chou C.P., 2011. Fabrication of a double-sided micro-lens array by a glass molding technique, Journal of Micromechanics and Microengineering, vol.21, no.8, p.085020.
    Huang S., Li M., Shen L., Qiu J.,Zhou Y., 2018. Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow. Optics & Laser Technology, vol.100, pp.298-303.
    Chen P.L., Hong R.H.,Yang S.Y., 2015. Hot-rolled embossing of microlens arrays with antireflective nanostructures on optical glass, Journal of Micromechanics and Microengineering, vol.25, no.9, pp.095001.
    Sun R., Chang L., Li L., 2015. Manufacturing polymeric micro lenses and self-organised micro lens arrays by using microfluidic dispensers, Journal of Micromechanics and Microengineering, vol.25, no.11, pp.115012.
    Luo Z., Yin K., Dong X., Duan J.A., 2018. Fabrication of parabolic cylindrical microlens array by shaped femtosecond laser, Optical Materials, vol.78, pp.465-470.
    Chen S.T.,Yang S.W., 2017. A high-density, super-high-aspect-ratio microprobe array realized by high-frequency vibration assisted inverse micro w-EDM, Journal of Materials Processing Technology, vol.250, pp.144-155.
    Chen S.T.,Chen C.H., 2017. Development of a novel micro w-EDM power source with a multiple Resistor-Capacitor (mRC) relaxation circuit for machining high-melting point, -hardness and -resistance materials, Journal of Materials Processing Technology, vol.240, pp.370-381.
    Xu K., Zeng Y., Li P., Zhu D., 2017. Vibration assisted wire electrochemical micro machining of array micro tools, Precision Engineering, vol.47, pp.487-497.
    Zhu Z., To S., Zhang S., 2015. Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining, Optics Express, vol.23, no.16, pp.20593.
    Wang Q., Zhou W., 2017. Direct fabrication of cone array microstructure on monocrystalline silicon surface by femtosecond laser texturing, Optical Materials, vol.72, pp.508-512.
    Kwon M.H., Shin H.S., Chu C.N., 2014. Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition, Applied Surface Science, vol.288, pp.222-228.
    Zhou T., Xu R., Ruan B., Liang Z., 2018. Wang X., Fabrication of microlens array on 6H-SiC mold by an integrated microcutting-etching process, Precision Engineering, vol.54, pp.314-320.
    Chen S.T., Tung Y H., Jiang J.R., 2018. A novel surface microtexture array generation approach using a fast-tool-feeding mechanism with elliptical cam drive, Journal of Materials Processing Technology, vol.255, pp.252-262.
    Zhou W., Ling W. s., Liu W., Peng Y., Peng J., 2015. Laser direct micromilling of copper-based bioelectrode with surface microstructure array, Optics and Lasers in Engineering, vol.73, pp.7-15.
    Yan J., Horikoshi A., Kuriyagawa T., Fukushima Y., 2012. Manufacturing structured surface by combining microindentation and ultraprecision cutting, CIRP Journal of Manufacturing Science and Technology, vol.5, no.1, pp.41-47.
    Lu H., Lee D.W., Lee S.M., Park J.W., 2012. Diamond machining of sinusoidal grid surface using fast tool servo system for fabrication of hydrophobic surface, Transactions of Nonferrous Metals Society of China, vol.22, pp.s787-s792.
    Zhou W., Liu S., Liu W., Zhang C., Li Y., Xu W., Hui K.S., 2017. Novel dry metal electrode with tilted microstructure fabricated with laser micromilling process, Sensors and Actuators A: Physical, vol.264, pp.76-83.
    Levoy M., Zhang Z., McDowall I., 2009. Recording and controlling the 4D light field in a microscope using microlens arrays, Journal of microscopy, vol.235, no.2, pp.144-162.
    Wei Y., Yang Q., Bian H., Chen F., Li M., Dai Y., Hou X., 2018. Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems, Applied Surface Science, vol.457, pp.1202-1207.
    Mukaida M., Yan J., 2017. Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo, International Journal of Machine Tools and Manufacture, vol.115, pp.2-14.
    Ørsted H. C., 2014. Selected Scientific Works of Hans Christian Ørsted, ISBN 978-1-4008-6485-0, pp.417-420.
    Saslow W. M., 2002. Electricity, Magnetism, and Light, ISBN 978-0-12-619455-5.
    Sekaran, Easwaran Chandira, 2016. Electric Renewable Energy Systems, ISBN 978-0-12-804448-3.
    Norman C. H., Edwin M. H., Mallmann A. J., 1980. Physics Principles & Applications, ISBN 0-07-026851-7, pp.704.
    Herrick C. N., 1996. Basic Electronics Math, ISBN 978-0-7506-9727-9
    Richard C., 2009. Electricity for the Entertainment Electrician & Technician, ISBN 978-0-240-80995-3, pp.83-94.
    Irwin J. D., Nelms R. M., 2011. Engineering Circuit Analysis, ISBN 978-0-470-87377-9, pp.436-437.
    Norman C. H., Edwin M. H., Mallmann A. J., 1980. Physics Principles & Applications, ISBN 0-07-026851-7, pp.707.
    Norman C. H., Edwin M. H., Mallmann A. J., 1980. Physics Principles & Applications, ISBN 0-07-026851-7, pp.714.
    Ugural A. C., Fenster S. K., 2003. Advanced strength and applied elasticity. Pearson education, ISBN 0-13-047392-8, pp.66
    Khotimah S. N., Viridi S., Widayani, Khairurrijal, 2011. The dependence of the spring constant in the linear range on spring parameters, Physics Education, vol.46, no.5, pp.540-543.
    Serope Kalpakjian, Steven R. Schmid, 2013. Manufacturing Engineering and Technology, ISBN 978-981-06-9406-7, pp.314
    William D. Callister, David G. Rethwisch, 2011. Materials Science and Engineering, ISBN 978-0-470-50586-1, pp.222.
    William D. Callister, David G. Rethwisch, 2011. Materials Science and Engineering, ISBN 978-0-470-50586-1, pp.48-50.
    William D. Callister, David G. Rethwisch, 2011. Materials Science and Engineering, ISBN 978-0-470-50586-1, pp.156-157.
    Smallman, R. E., Ngan, A. H. W., 2014. Modern Physical Metallurgy (Eighth Edition), ISBN 978-0-08-098204-5, pp.9.
    Cleveland R.M., Ghosh A.K., 2002. Inelastic effects on springback in metals, Internatioal Journal of Plasticity, vol.18, pp.769-785.
    William D. Callister, David G. Rethwisch, 2011. Materials Science and Engineering, ISBN 978-0-470-50586-1, pp.200.
    William D. Callister, David G. Rethwisch, 2011. Materials Science and Engineering, ISBN 978-0-470-50586-1, pp.211.-p222.
    William D. Callister, David G. Rethwisch, 2011. Materials Science and Engineering, ISBN 978-0-470-50586-1, pp.215.
    Hibbeler R. C., 2010. Engineering Mechanics Dynamics12th, ISBN 978-981-06-8137-1, pp.495.
    Hibbeler R. C., 2010. Engineering Mechanics Dynamics12th, ISBN 978-981-06-8137-1, pp.501.
    Sommer C., 2000. Non-traditional machining handbook, Advance Publishing, Inc., pp.117-124
    Raymond A. S., John W. J., Shang Fang T., Jenh Yih J., Tzong Jer Y., 2011. Principles of Physics A Calculus Approach, ISBN 978-981-4336-66-6, pp.709.
    Uhlmann E., Röhner M., Langmack M., 2010. Micro-EDM Micro-Manufacturing Engineering and Technology, pp. 39-58
    Slide Player,Electrical Discharge Machining (EDM),https://slideplayer.com/slide/4239939/
    Mahapatra S.S., Patnaik A., 2006. Parametric optimization of wire electrical discharge machining (WEDM) process using Taguchi method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol.28, no.4, pp.422-429.
    Serope Kalpakjian, Steven R. Schmid, 2013. Manufacturing Engineering and Technology, ISBN 978-981-06-9406-7, pp.738-739.
    Murakami S., Yanagida Y., Hatsuzawa T., 2017. Aspherical Lens Design Using Computational Lithography, Precision Engineering, vol.50, pp.372-379.
    Changsheng L., Hao W., Tao Z., 2016. Hard Magnetization Direction and Its Relation with Permeability of Conventional Grain-oriented Electrical Steel, Rare Metal Materials and Engineering, vol.45, no.6, pp.1369-1373.
    Davis, J.R., 1995. ASM Specialty Handbook, Tool Materials, ASM International, Materials 123 Park, OH 440730002, pp88.
    Zikmund A., Ripka P., 2012. A magnetic distance sensor with high precision, Sensors and Actuators A: Physical, vol.186, pp.137-142.
    Ouyang G., Chen X., Liang Y., Macziewski C., Cui J., 2019. Review of Fe-6.5 wt%Si high silicon steel—A promising soft magnetic material for sub-kHz application, Journal of Magnetism and Magnetic Materials, vol.481, pp.234-250.
    Gmyrek Z., 2008. The iron losses in the weak alternating fields, Physica B: Condensed Matter, vol.403, no.2-3, pp.478-481.
    Zhao J., Wang M., Wang Z., Grekhov L., Qiu T., Ma X., 2017. Different boost voltage effects on the dynamic response and energy losses of high-speed solenoid valves, Applied Thermal Engineering, vol.123, pp.1494-1503.
    Della Torre, Edward, 2000. Magnetic Hysteresis, London : Wiley, pp.230.
    Singh G., Kumar T.C.A., Naikan V.N.A., 2018. Speed estimation of rotating machinery using generated harmonics, Computers & Electrical Engineering, vol.72, pp.420-430.
    Phan H. P., Dinh T., Kozeki T., Qamar A., Namazu T., Dimitrijev S., Nguyen N. T., Dao D. V., 2016. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating, Sci Rep, Vol.6, pp.28499.
    Wu C. Y., Li L. Y., Thornton C., 2003. Rebound behaviour of spheres for plastic impacts, International Journal of Impact Engineering, Vol.28, No.9, pp.929-946.
    Khlystov N., Lizardo D., Matsushita K., Zheng J., 2013. Uniaxial Tension and Compression Testing of Materials.
    Abood A. N., Saleh A. H., Abdullah Z. W., 2013. Effect of Heat Treatment on Strain Life of Aluminum Alloy AA 6061, Journal of Materials Science Research, Vol.2, No.2.

    無法下載圖示 電子全文延後公開
    2024/12/31
    QR CODE