簡易檢索 / 詳目顯示

研究生: 吳尚倚
Wu, Sang-Yi
論文名稱: Rab18在嗅球成年神經元新生中的作用及分子機制
The role and molecular mechanism of Rab18 in adult olfactory bulb neurogenesis
指導教授: 王慈蔚
Wang, Tsu-Wei
口試委員: 俞震亞
Yu, Jenn-Yah
林炎壽
Lin, Yen-shou
王慈蔚
Wang, Tsu-Wei
口試日期: 2022/06/09
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 33
中文關鍵詞: 成年神經元新生產後小鼠嗅覺行為處女鼠
英文關鍵詞: Rab18, adult neurogenesis, olfactory behavior, Wnt/β-catenin, Shh, Gli2, GA, female virgin mice, postpartum mice
研究方法: 分子生物學實驗動物行為實驗
DOI URL: http://doi.org/10.6345/NTNU202200674
論文種類: 學術論文
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 成年神經幹細胞存在於哺乳動物大腦側腦室的腦室下區並且終其一生會負責成年神經元新生。成年神經幹細胞會產生神經母細胞,這些細胞會藉由rostral migratory stream遷徙到嗅球分化成神經元。嗅球成年神經元新生的功能為氣味辨別和育幼行為。Rab18屬於Ras相關的小GTP酶家族之成員。我們發現出生後的腦室下區中,Rab18維持神經幹細胞的增殖。Wnt / -catenin訊號會促進在腦室下區中的細胞增殖。Wnt路徑的其中一個下游基因為Cyclin D1,此蛋白可以增加發育中或是成年大腦中神經幹細胞的數量。我們發現Rab18能夠活化Wnt路徑以及對於Cyclin D1的表現是充分且必要的。因此我們假設Rab18透過-catenin來調控Cyclin D1的表現。我們在P19細胞株中過量表現Rab18,發現Rab18會增加-catenin的表現與促進-catenin進入細胞核。但在P19細胞株中過量表現Rab18並且降低-catenin表現,發現Cyclin D1的表現依舊增加,顯示Rab18不是透過-catenin來調控Cyclin D1的表現。銀杏內酯A (GA)是銀杏萃取物的其中一種成分。我們發現GA能夠活化Wnt路徑,並且促進Cyclin D1與 -catenin的表現。因此我們假設減少Rab18的表現時,加入GA能挽救Cyclin D1與 -catenin的表現。在P19細胞株中降低Rab18表現並且加入GA,發現Cyclin D1與 -catenin的表現量增加,顯示GA能挽救Rab18缺失時,Cyclin D1與 -catenin的表現。我們也發現Rab18能活化Sonic hedgehog (Shh) 路徑。Shh路徑的下游轉錄因子Gli2會調控Cyclin D1基因的表現。所以我們假設 Rab18 透過 Gli2 調節Cyclin D1的表達。在P19細胞株中過量表現Rab18並且降低Gli2表現,發現Gli2缺失會反轉Rab18促進Cyclin D1的效果。在過往研究中,我們發現Rab18-/-產後母鼠對於費洛蒙的氣味辨別有缺陷,牠們無法區分自己幼崽和外來幼崽的氣味。Rab18-/-處女母鼠對於一般氣味的記憶也是受損的。所以我們想進一步檢查Rab18-/-處女鼠和產後母鼠中,一般氣味辨別和氣味偵測是否存在缺陷。我們發現 Rab18 對於處女和產後母鼠的氣味辨別是必要的。Rab18對氣味偵測也是必須的。我們的研究顯示Rab18促進-catenin的表達以及使其進入到細胞核並透過 Gli2而非-catenin來促進Cyclin D1的表現。而GA能挽救因為Rab18缺失的Cyclin D1與 -catenin表現。此外Rab18對於處女鼠和產後小鼠能夠維持一般氣味的相關行為是必須的。

    Adult neural stem cells (NSCs) exist in the subventricular zone (SVZ) of the lateral ventricle in the mammalian brain and are responsible for neurogenesis throughout life. In the SVZ, NSCs produce neuroblasts, which migrate through the rostral migratory stream (RMS) to the olfactory bulb (OB) and differentiate into neurons. Functions of adult OB neurogenesis are odor discrimination and maternal behaviors. Rab18 is a member of the Ras-related small GTPase superfamily. Previously, we find that Rab18 maintains the proliferation of NSCs in the postnatal SVZ. The Wnt/-catenin signaling has been shown to promote cell proliferation in the SVZ. One of the Wnt pathway target genes is Cyclin D1, which promotes the expansion of NSC in the developing and adult brain. We find that Rab18 activates the Wnt pathway and is necessary and sufficient for the expression of Cyclin D1. Therefore, we hypothesized that Rab18 regulated the expression of Cyclin D1 through-catenin. First, we overexpressed Rab18 in P19 cells. We found that Rab18 promoted the expression of -catenin and its translocation into the nucleus. Second, we overexpressed Rab18 and knocked down -catenin in P19 cells. We found that Rab18 did not promote the expression of Cyclin D1 through -catenin. Ginkgolide A (GA) is one of the components of Ginkgo biloba extract. We find that GA activates the Wnt pathway and promotes the expression of Cyclin D1 and -catenin. Therefore, we hypothesized that GA could rescue Cyclin D1 and -catenin expression in Rab18 knockdown group. We knocked down Rab18 and treated cells with GA. We found that GA rescued Cyclin D1 and -catenin expression in Rab18 knockdown group. We discover that Rab18 also activates the Sonic hedgehog (Shh) pathway. Gli2 has been shown to mediate the mitogenic effects of Shh by transcriptional activation of cyclin D1. Therefore, we hypothesized that Rab18 regulated the expression of Cyclin D1 throughGli2. We overexpressed Rab18 and knocked down Gli2 in P19 cells. We found that Rab18 promoted the expression of Cyclin D1 through Gli2. Previously, we find that female Rab18-/- mice have odor discrimination defects that they cannot discriminate odors of their own pups from foreign ones. Rab18-/- female virgin mice have impaired odor memory in chemicals as well. We further examined whether they had deficits in chemical odor discrimination and odor detection in female virgin and postpartum mice. We found that Rab18 was necessary for odor discrimination in female virgin and postpartum mice. Rab18 was also required for odor detection in female virgin and postpartum mice. Taken together, our studies suggest that Rab18 promotes -catenin expression and its translocation into the nucleus, and Rab18 promotes the expression of Cyclin D1 through Gli2. GA rescues Cyclin D1 and -catenin expression in Rab18 loss-of-function condition. In addition, Rab18 is required for odor behaviors in female virgin and postpartum mice.

    摘要I 英文摘要III 目錄V 緒論01 材料與方法04 結果09 討論15 圖18 引用29

    1. Ming, G.L. and H. Song, Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 2011. 70(4): p. 687-702.
    2. Ahn, S. and A.L. Joyner, In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature, 2005. 437(7060): p. 894-7.
    3. Azim, H.A., Jr. and A.H. Partridge, Biology of breast cancer in young women. Breast Cancer Res, 2014. 16(4): p. 427.
    4. Huang, P.-W., Rab18 Negatively Regulates Dopamine to Induce Adult Neurogenesis and Maternal Behaviors in Postpartum Mice, in 生命科學系. 2017, 國立臺灣師範大學: 台北市. p. 79.
    5. Chen, T.-Y., Rab18 Regulates Self-renewal of Postnatal Neural Stem Cells in the Subventricular Zone and Odor Discrimination in Adult Female Mice, in 生命科學系. 2020, 國立臺灣師範大學: 台北市. p. 44.
    6. Chou, Y.-W., The Role of Rab18 in Adult Neurogenesis of Lactating Female Mice, in 生命科學系. 2015, 國立臺灣師範大學: 台北市. p. 58.
    7. Schwartz, S.L., et al., Flow cytometry for real-time measurement of guanine nucleotide binding and exchange by Ras-like GTPases. 2008. 381(2): p. 258-266.
    8. Yang, X.-L., YAP and Rab18 regulate properties of adult neural stem cells in the mammalian subventricular zone, in 生命科學系. 2019, 國立臺灣師範大學: 台北市. p. 55.
    9. Chou, C.-M., Rab18 regulates adult neurogenesis and olfactory behaviors in male mice. 2020.
    10. Alao, J.P., The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Molecular cancer, 2007. 6: p. 24-24.
    11. Artegiani, B., D. Lindemann, and F.J.J.o.E.M. Calegari, Overexpression of cdk4 and cyclinD1 triggers greater expansion of neural stem cells in the adult mouse brain. 2011. 208(5): p. 937-948.
    12. Shtutman, M., et al., The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A, 1999. 96(10): p. 5522-7.
    13. Ishibashi, M. and A.P. McMahon, A sonic hedgehog-dependent signaling relay regulates growth of diencephalic and mesencephalic primordia in the early mouse embryo. Development, 2002. 129(20): p. 4807-4819.
    14. Moreno-Jiménez, E.P., et al., Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nature Medicine, 2019. 25(4): p. 554-560.
    15. Shif, O., et al., Effects of Ginkgo biloba administered after spatial learning on water maze and radial arm maze performance in young adult rats. Pharmacol Biochem Behav, 2006. 84(1): p. 17-25.
    16. Stackman, R.W., et al., Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer's disease by chronic Ginkgo biloba treatment. Exp Neurol, 2003. 184(1): p. 510-20.
    17. Li, M.Y., et al., Ginkgolide B promotes neuronal differentiation through the Wnt/β-catenin pathway in neural stem cells of the postnatal mammalian subventricular zone. Sci Rep, 2018. 8(1): p. 14947.
    18. Kuo, L.-C., et al., Ginkgolide A Prevents the Amyloid-β-Induced Depolarization of Cortical Neurons. Journal of Agricultural and Food Chemistry, 2019. 67(1): p. 81-89.
    19. Brennan, P.A. and F. Zufall, Pheromonal communication in vertebrates. Nature, 2006. 444(7117): p. 308-15.
    20. Feierstein, C.E.J.F.i.N., Linking adult olfactory neurogenesis to social behavior. 2012. 6: p. 173.
    21. Munger, S.D., et al., An olfactory subsystem that detects carbon disulfide and mediates food-related social learning. Curr Biol, 2010. 20(16): p. 1438-44.
    22. Cheng, C.-Y., ENU mutagenesis identifies Rab18-deficient mice with sensorimotor abnormalities and axonal degeneration in the sensory nerves, in 臨床醫學研究所. 2015, 國立陽明大學: 新竹市. p. 89.
    23. Cheng-Yung Tang, Study of the Role of Rab18 in the Development of Cerebellum, in 生命科學系暨基因體科學研究所. 2012, 國立陽明大學: 新竹市. p. 51.
    24. Lin, Y.T., et al., YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway. Exp Cell Res, 2012. 318(15): p. 1877-88.
    25. Zhang, H.-T., et al., Hepatitis B virus x protein induces autophagy via activating death-associated protein kinase. 2014. 21(9): p. 642-649.
    26. Matsuzaki, T., [Multi-color immunofluorescence microscopy in cultured cells]. Nihon Yakurigaku Zasshi, 2019. 154(4): p. 165-170.
    27. Wodarz, A., R.J.A.r.o.c. Nusse, and d. biology, Mechanisms of Wnt signaling in development. 1998. 14(1): p. 59-88.
    28. McBurney, M.W., et al., Differentiation and maturation of embryonal carcinoma-derived neurons in cell culture. J Neurosci, 1988. 8(3): p. 1063-73.
    29. Behrens, J., et al., Functional interaction of β-catenin with the transcription factor LEF-1. Nature, 1996. 382(6592): p. 638-642.
    30. Pelullo, M., et al., Wnt, Notch, and TGF-β Pathways Impinge on Hedgehog Signaling Complexity: An Open Window on Cancer. 2019. 10.
    31. Mill, P., et al., Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes & development, 2003. 17(2): p. 282-294.
    32. Kim, J., M. Kato, and P.A. Beachy, Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. 2009. 106(51): p. 21666-21671.
    33. Nunez-Parra, A., et al., Regulation of adult neurogenesis by behavior and age in the accessory olfactory bulb. 2011. 47(4): p. 274-285.
    34. Adachi, K., et al., Beta-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells, 2007. 25(11): p. 2827-36.
    35. Ferri, A.L.M., et al., Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 2004. 131(15): p. 3805-3819.
    36. Sato, N., et al., Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine, 2004. 10(1): p. 55-63.
    37. Viti, J., A. Gulacsi, and L. Lillien, Wnt regulation of progenitor maturation in the cortex depends on Shh or fibroblast growth factor 2. J Neurosci, 2003. 23(13): p. 5919-27.
    38. Bragado Alonso, S., et al., An increase in neural stem cells and olfactory bulb adult neurogenesis improves discrimination of highly similar odorants. Embo j, 2019. 38(6).
    39. Santini, R., et al., SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells. Oncogene, 2014. 33(38): p. 4697-4708.
    40. Kukekov, V. G., et al., A nestin-negative precursor cell from the adult mouse brain gives rise to neurons and glia. Glia, 1997. 21(4): p. 399-407.

    無法下載圖示 本全文未授權公開
    QR CODE