研究生: |
陳政良 Chen Chung-Liang |
---|---|
論文名稱: |
利用實驗與計算研究探討氫氣氧化在固態氧化物燃料電池上金屬陽極的反應趨勢 Trends of Hydrogen Oxidation Reaction on Metal Anodes in SOFC application: A joint experimental and computational study |
指導教授: | 王禎翰 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 固態氧化物燃料電池 、陽極 、金屬催化 、氫氣氧化 |
英文關鍵詞: | solid oxide fuel cell, anode, metal catalysis, hydrogen oxidation |
論文種類: | 學術論文 |
相關次數: | 點閱:152 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文藉由實驗方法與電腦計算來探討固態氧化物燃料電池陽極上的氫氣氧化反應在過渡金屬Co、Ni、Cu (第三週期) Rh、Pd、Ag (第四週期) 和 Ir、Pt、Au (第五週期)的趨勢。在實驗部分我們將Co/YSZ、Ni/YSZ、Cu/YSZ、 Rh/YSZ、Pd/YSZ、Ag/YSZ、Ir/YSZ、Pt/YSZ、Au/YSZ的陽極材料,條理式利用屏幕塗佈法來製作電解質支撐電池。而組裝後的電池 使用XRD、SEM、EDS來對陽極分別進行化合物組成、表面微結構、確認元素組成的特性分析,並且通入氫氣做為燃料且使用電位儀及阻抗分析儀測試電池在600-800 oC的電化學特性。而實驗的結果發現Au、Ag作為陽極材料的電池有最好的效果。在計算部分中我們透過O* + H* OH* 及 OH* + H* H2O*兩個路徑在純金屬、ZrO2、金屬吸附的ZrO2三個部份的反應計算,去模擬氫氣氧化在電極、YSZ電解質及金屬/電解質介面上的反應機制。在計算的結果,反應在Au、Ag、Cu的金屬/電解質介面上有最小的反應活化能,這也是因為分子在這表面上的吸附能相較其他來的低。由此發現電池陽極的反應效果的好壞跟跟陽極表面的分子吸附強弱有關係。
The anodic reaction for hydrogen fuel (hydrogen oxidation reaction, HOR) for solid oxide fuel cell (SOFC) system has been experimentally and computationally investigated on the 3d (Co, Ni, Cu), 4d (Rh, Pd, Ag) and 5d (Ir, Pt, Au) transition metals. Experimentally, the electrolyte-supported SOFCs with anodes of Co/YSZ, Ni/YSZ, Cu/YSZ, Pd/YSZ, Ag/YSZ, Ir/YSZ, Pt/YSZ and Au/YSZ have been systematically fabricated by screen printing method. The fabricated fuel cells have been initially characterized from XRD, SEM and EDX to examine their chemical compositions and microstructures. The electrocatalytic performance for HOR has been further determined by Potentiostat and electrochemical impedance spectroscopy (EIS) at 600 – 800 oC. The experimental result shows that Ag and Au-based anode have better performance. Computationally, we thoroughly examine the two elementary steps: O* + H* OH* and OH* + H* H2O*, on pure metals, ZrO2 surfaces and metal adatom modified ZrO2 surfaces to simulate HOR on electrode (2PB), YSZ electrolyte (2PB) and metal/electrolyte (3PB) surfaces, respectively. The computational results shows relatively lower reaction barriers on Ag and Au-based surfaces, attributable to the lower adsorption energies of H*, O* and OH* on these surfaces. On the other hand, the better HOR performance observed in SOFC experiment correspond to the weaker binding energy between anode surfaces and adspices.
1. Stambouli, A. B.; Traversa, E., Renewable and Sustainable Energy Reviews 2002, 6, 433.
2. Kakaça, S.; Pramuanjaroenkijb, A.; Zhou, X., International Journal of Hydrogen Energy 2007, 32, 761 – 786.
3. Stöver, D., Ceramics International 2004, 30, 1107.
4. Jacobson, A. J., Chemistry of Materials 2009, 22, 660-674.
5. Ribeiro, N. F. P., Applied Catalysis A: General 2009, 353, 305.
6. Singhal., S. C., Solid State Ionics 2000, 135, 305-313.
7. http://www.doitpoms.ac.uk/tlplib/fuel-cells/sofc_electrolyte.php.
8. N.Q. Minh, ,Solid State Ionics 2004, 174, 271.
9. Sahnoun, R.; Caprio, C. A. D. J., Comput. Chem. Jpn. 2008, 7, (2), 55-62.
10. Min Chena, B. H. K., Qing Xub , Byung Guk Ahna., Journal of Membrane Science 2009, 334, 138–147.
11. Marina, O. A.;Bagger, C.; Primdahl S., Solid State Ionics 1999, 123, 199-208.
12. Jongmin, K.; Sungkyu, L.; Kyoung-Hoon, K.; Hyun Seon, H., Int. J. Energy Res 2010, 34, 438-444.
13. Kan H., Lee H., Applied Catalysis B: Environmental 2010,97,108-114
14. Cucinotta, C. S.; Bernasconi, M.; Parrinello, M., Physical Review Letters 2011, 107, 206103.
15. Rossmeisl J., Bessler W.G., Solid State Ionics 2008, 178 , 1694-1700.
16. Shishkin, M.; Ziegler, T., The Journal of Physical Chemistry C 2009, 113, 21667-21678.
17. Shao Z., Zhou W., Zhu Z., Progress in Materials Science 2012,57, 804-874.
18. http://zh.wikipedia.org/zh-tw/Wikipedia
19. Atkins, P.; Paula, J. d., Atkin's Physical Chemistry (seventh Edition).
20. Fronzi, M.; Piccinin, S.; Delley, B.; Traversa, E.; Stampfl, C., Phys. Chem.
21. Kresse, G.; Hafner, J., Phys. Rev. B 1993, 47, 558.
22. Kresse, G.; Hafner, J., Phys. Rev. B 1994, 49, 1425.
23. Kresse, G.; Furthmüller, J., Phys. Rev. B 1996, 54, 11169.
24. Cleperley, D. M.; Alder, B. J., Phys. Rev. Lett. 1980, 45, 566.
25. Perdew, J. P.; Yang, Y., Phys. Rev. B 1992, 45, 244.
26. Blöchl, P. E., Phys. Rev. B 1994, 50, 17953.
27. Kresse, G.; Joubert, D., Phys. Rev. B 1999, 59, 1758.
28. Monkhorst, H. J.; Pack, J. D., Phys. Rev. B 1976, 13, 5188.
29. Mills, G.; Jonsson, H.; Schenter, G. K., Surf. Sci. 1995, 324, 305.