簡易檢索 / 詳目顯示

研究生: 林品萱
Lim, Pin Xuan
論文名稱: 都會白鼻心的繁殖記錄、活動範圍與活動模式
Breeding records, home range and activity pattern of the masked palm civet (Paguma larvata) in urban areas.
指導教授: 林思民
Lin, Si-Min
曾惠芸
Tseng, Hui-Yun
口試委員: 李佩珍
Shaner, Pei-Jen Lee
顏士清
Yen, Shih-Ching
林思民
Lin, Si-Min
曾惠芸
Tseng, Hui-Yun
口試日期: 2023/06/07
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 68
中文關鍵詞: 遊蕩犬隻路殺都市生態野生動物管理棲地破碎化棲地選擇
英文關鍵詞: free-roaming dog, urban ecology, wildlife management, road-killed wildlife, habitat fragmentation, habitat selection
研究方法: 實驗設計法行動研究法調查研究
DOI URL: http://doi.org/10.6345/NTNU202300781
論文種類: 學術論文
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著都市用地急劇擴張,許多動植物逐漸適應並進駐都市地區。良好的都市野生動物管理政策將有助建立生物多樣性友善的都市,保障居民福利之餘亦提供環境教育機會。白鼻心是近年來頻繁出沒都市之哺乳動物,然而我們對其在都市的生存現況所知甚少。本研究第一部分分析台中市野生動物保育學會的歷年救傷資料,顯示近10年來白鼻心在都市地區的數量顯著增多,甚至不少個體成功在人口稠密的地區築窩繁殖,且築窩地點的地景組成有超過90%為人工建物。都市的白鼻心繁殖季節為春季至秋季,並以春季為主要的繁殖季節。白鼻心成體的主要死因為犬隻攻擊和車禍,而幼獸的主要救傷原因為母獸遺棄。犬隻攻擊和車禍數量不僅居高其首,其死亡率更達百分之百。了解白鼻心於都市的習性與棲地選擇將有助於建立有效的野生動物管理政策,進而減少都市白鼻心與人之間的衝突。因此本研究的第二部分在台北市蟾蜍山一帶設立研究樣區,架設自動相機監測白鼻心於淺山及相鄰社區的活動。同時利用無線電發報器追踪四隻白鼻心,以了解都市地區白鼻心的活動範圍、活動模式與所偏好之棲地。從自動相機的資料來看,午夜為都市白鼻心最活躍的時間,其活動高峰落在22:00到03:00之間。以最小凸多邊形及核密度分析方式計算白鼻心的活動範圍,得出白鼻心的平均活動範圍面積分別為11.44 ± 3.23公頃及17.87 ± 5.34公頃,遠小於過去研究於對自然環境族群進行的追踪結果。此外,追踪結果顯示,白鼻心於白天的活動範圍完全局限於夜晚的活動範圍內,且一天之間僅使用總活動範圍的一小部分。個體間的活動範圍有著高度重疊。建築物為白鼻心活動範圍中最常見的地景組成,且有兩隻個體顯著偏好利用建築物及其周遭的環境。所有白鼻心皆顯著驅避道路及裸露地,顯示道路是都市棲地破碎化的主因。本研究提供了白鼻心入住都市環境的證據及其面臨的威脅,此資訊將對建立野生動物管理政策有所助益。為減低都市白鼻心的死亡率及預防伴侶動物與野生動物之間密切接觸可能導致的傳染疾病,遊蕩犬貓的管理刻不容緩。同時也應向民眾傳遞與野生動物接觸時的正確行為,維護當地居民和野生動物的安全。

With the rapid expansion of urban areas and the increasing number of species adapting to urban environments, there is a global trend to prioritize urban wildlife conservation and urban residents’ welfare. In recent years, population of the masked palm civets (Paguma larvata) has increased in several highly populated cities in Taiwan. In chapter 1, I analyzed rescue data from 2010 to 2021 in Taichung, one of the largest cites in central Taiwan. The records revealed a steady growth in the civet population since 2017. Breeding season lasts from spring to autumn, with primary mating season in spring. Interestingly, urban civets were observed to inhabit locations where over 90% of the land cover were built area, and even nest inside buildings. The main cause of mortality in adults was dog attack followed by car accident, while the main rescue reason for young civets was orphaned. The results demonstrated the need for new civet conservation and management policies. However, the behavior of civets in cities remained understudied, hindering the establishment of effective changes. In chapter 2, I set up a study site in Taipei city where landscape features comprised of human modified secondary lowland forest area, residential area, local schools and universities. Infrared cameras were set to monitor civets’ activity, and four civets were radio-tracked to identify their home range and habitat preferences. Camera records indicated that civets were most active around midnight, and their activity peak was between 22:00 to 03:00. The mean MCP100 and mean KDE95 of the four civets were 11.44 ha ± 3.23 and 17.87 ha ± 5.34, respectively, which was remarkably smaller compared to previous studies conducted in natural or rural habitats. Home range and core range in day time were mostly nested within those at night. Home ranges highly overlap among individuals. Furthermore, civets often use only a small portion of their home range on a daily basis. Infrastructure was the main habitat type within civet home ranges, and was used at a significantly higher proportion than its availability for two of the studied civets. In contrast, all civets significantly avoided road and bare ground. Overall, this study provided concrete evidences of civets’ adaptation to urban areas, identified threats to their survival, and offered recommendations for wildlife management and public education plans in urban areas. Minimizing future human-wildlife conflicts and promoting harmonious coexistence between both sides will be an important task in wildlife conservation.

致謝 I 中文摘要 V Abstract VII Contents IX List of Figures XII List of Tables XIII Introduction 1 Methods 4 Data collection and focal site 4 Classification of life stages 5 Land cover estimation and human population density 5 Statistical analysis 6 Results 7 Breeding records and threats 7 Temporal variation of civets’ age structure 7 Variation in risk types among age groups 8 Land cover at civets’ nesting sites 9 Discussion 10 Threats to the masked palm civet 10 Civets are successful city dwellers 12 Urban adaptation requires further research 13 References 15 Figures 21 Chapter 2. Home range, activity patterns and habitat selection of urban civets 26 Introduction 26 Materials and Methods 29 Study area 29 Camera trapping 29 Radiotracking 31 Morphometrics 33 Data analysis 33 Land cover estimation 35 Results 37 Camera trapping 37 Morphometrics 37 Radiotracking 38 Home range and core range 39 Night activity patterns 39 Habitat analysis 40 Discussion 41 High flexibility in the Viverridae family 41 Home range sizes were smaller in urban areas 41 High utilization of infrastructure 43 Culverts and wildlife crossing bridges can enhance habitat connectivity 44 Important implications on urban wildlife management 45 References 47 Tables 53 Figures 61 Supplementary 67

Chapter 1 References
Alcock, I., & Warsop, P. (1982). Diet, distribution and habitat preferences of stoats and weasels in Sheffield. Sorby Record, 20:5-10.
Angel, S., Sheppard, S. C., Civco, D. L., Buckley, R., Chabaeva, A., Gitlin, L., Kraley, A., Parent, J., & Perlin, M. (2005). The dynamics of global urban expansion. Transport and Urban Development Department, The World Bank, Washington D.C.
Baker, P. J., Ansell, R. J., Dodds, P. A. A., Webber, C. E., & Harris, S. (2003). Factors affecting the distribution of small mammals in an urban area. Mammal Review, 33:95-100.
Baker, P. J., & Harris, S. (2007). Urban mammals: what does the future hold? An analysis of the factors affecting patterns of use of residential gardens in Great Britain. Mammal Review, 37:297-315.
Barnard, S., Chincarini, M., Di Tommaso, L., Di Giulio, F., Messori, S., & Ferri, N. (2015). Free-roaming dogs control activities in one Italian province (2000-2013): Is the implemented approach effective? Macedonian Veterinary Review, 38:149-158.
Bateman, P. W., & Fleming, P. A. (2012). Big city life: carnivores in urban environments. Journal of Zoology, 287:1-23.
Chen, M. T., Tewes, M. E., Pei, K. J. C., & Grassman, L. I. (2009). Activity patterns and habitat use of sympatric small carnivores in southern Taiwan. Mammalia, 73:20-26.
Chen, W. J., Lo, C. C., Tsai, F. A., & Chang, A. Y. (2020). Using open data to establish a multi-temporal and terrestrial environmental dataset of Taiwan. Taiwan Journal of Biodiversity, 22:13-44.
Doherty, T. S., Dickman, C. R., Glen, A. S., Newsome, T. M., Nimmo, D. G., Ritchie, E. G., Vanak, A. T., & Wirsing, A. J. (2017). The global impacts of domestic dogs on threatened vertebrates. Biological Conservation, 210:56-59.
Environmental Systems Research Institute (ESRI). (2022). ArcGIS Release 10.1. Redlands, CA. ESRI, 2022 Sentinel-2 10m land cover time series of the world from 2017-2021. Produced by Impact Observatory, Microsoft, and Esri.
Faeth, S. H., Bang, C., & Saari, S. (2011). Urban Biodiversity: Patterns and mechanisms. Annals of the New York Academy of Sciences, 1223(1), 69-81.
Gaynor, K. M., Hojnowski, C. E., Carter, N. H., & Brashares J. S. (2018). The influence of human disturbance on wildlife nocturnality. Science, 360:1232-1235.
Gehrt, S. D., Anchor, C., & White, L. A. (2009). Home range and landscape use of coyotes in a metropolitan landscape: Conflict or coexistence? Journal of Mammalogy, 90:1045-1057.
Herrera, D. J., & Cove, M. V. (2020). Camera trap serendipity and citizen science point to broader effects of urban heat islands on food webs. Food Webs, 25:e00176.
Hughes, J., & Macdonald, D. (2013). A review of the interactions between free-roaming domestic dogs and wildlife. Biological Conservation, 157:341-351.
Iwama, M., Yamazaki, K., Matsuyama, M., Hoshino, Y., Hisano, M., Newman, C., & Kaneko, Y. (2017). Masked palm civet Paguma larvata summer diet differs between sexes in a suburban area of central Japan. Mammal Study, 42:185-190.
Jennings, A. P., Zubaid, A., & Veron, G. (2009). Ranging behaviour, activity, habitat use, and morphology of the Malay civet (Viverra tangalunga) on Peninsular Malaysia and comparison with studies on Borneo and Sulawesi. Mammalian Biology, 75:437-446.
Kang, W., Minor, E. S., Park, C. R., & Lee, D. (2015). Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosystems, 18:857-870.
Levy, J. K., & Crawford, P. C. (2004). Humane strategies for controlling feral cat populations. Journal of The American Veterinary Medical Association, 225:1354-1360.
Lin, W. L., Lin, S. M., Lin, J. W., Wang, Y., & Tseng, H. Y. (2015). Breeding performance of Crested Goshawk Accipiter trivirgatus in urban and rural environments of Taiwan. Bird Study, 62:177-184.
Liu, S. S., Fung, H. P., Liu, B. T., Cheng, F. P. (2007). Ovarian cycle of the captive Formosan gem-faced civets (Paguma larvata taivana). Zoo Biology, 26(1), 1-11.
Liu, C. C., Chi, C. H., Yen, S. C., Liu, J. N., Ju, Y. T., Kang, C. L., Chang, C. H., & Yu, P. H. (2020). Blood lead and zinc levels and their impact on health of free-living small carnivores in Taiwan, Republic of China. Journal of Wildlife Diseases, 56:157.
Łopucki, R., & Kiersztyn, A. (2020). The city changes the daily activity of urban adapters: Camera-traps study of Apodemus agrarius behaviour and new approaches to data analysis. Ecological Indicators, 110:105957.
Loss, S. R., Will, T., & Marra, P. P. (2013). The impact of free-ranging domestic cats on wildlife of the United States. Nature Communications, 4:1396.
Lowry, H., Lill, A., & Wong, B. B. M. (2013). Behavioural responses of wildlife to urban environments. Biological Reviews, 88:537-549.
Machida, N., Izumisawa, N., Nakamura, T., & Kiryu, K. (1992). Canine distemper virus infection in a masked palm civet (Paguma larvata). Journal of Comparative Pathology, 107:439-443.
Ninomiya, H., Ogata, M., & Makino, T. (2003). Notoedric mange in free‐ranging masked palm civets (Paguma larvata) in Japan. Veterinary Dermatology, 14:339-344.
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/
Rabinowitz, A. R. (1991). Behaviour and movements of sympatric civet species in Huai Kha khaeng wildlife sanctuary, Thailand. Journal of Zoology, 223(2), 281-298.
Ritzel, K., & Gallo, T. (2020). Behavior change in urban mammals: a systematic review. Frontiers in Ecology and Evolution, 8:576665.
Santini, L., González‐Suárez, M., Russo, D., Gonzalez‐Voyer, A., Von Hardenberg, A., & Ancillotto, L. (2018). One strategy does not fit all: determinants of urban adaptation in mammals. Ecology Letters, 22:365-376.
Schmidt, P. M., Swannack, T. M., Lopez, R. R., & Slater, M. R. (2009). Evaluation of euthanasia and trap - neuter - return (TNR) programs in managing free-roaming cat populations. Wildlife Research, 36:117-125.
Toriyabe, A., Enari, H., Enari, H. S., & Saito, M. U. (2022). Habitat selection by non-native masked palm civets in a Japanese rural landscape, incorporating individual differences. Journal of Mammalogy, 103(3), 608-617.
Toyoda, H., Eguchi, E., Furuya, M., Uetake, K., & Tanaka, T. (2012). Seasonal changes in body size and reproductive status of masked palm civets (Paguma larvata) captured in Saitama prefecture, Japan. Animal Behaviour and Management, 48:57-65.
Vanak, A. T., & M. E. Gompper. (2009). Dogs Canis familiaris as carnivores: their role and function in intraguild competition. Mammal Review, 39:265-283.
Wilkinson, D., & Smith, G. C. (2001). A preliminary survey for changes in urban Fox (Vulpes vulpes) densities in England and Wales, and implication for rabies control. Mammal Review, 31:107-110.
Wilson, D. E., Mittermeier, R. A., & Cavallini, P. (2009). Handbook of the mammals of the world. Lynx Edicions.
Yang, X. L., Liu, C., Yan, Q., & Cao, Y. O. (2013). Report on mortality due to rabies caused by masked palm civets Paguma larvata. Parasitoses and Infectious Diseases, 11:45-46.
Yen, S. C., Ju, Y. T., Shaner, P. J. L., & Chen, H. L. (2019). Spatial and temporal relationship between native mammals and free-roaming dogs in a protected area surrounded by a metropolis. Scientific Reports, 9: 8161.
Zapata-Ríos, G., & Branch, L. C. (2016). Altered activity patterns and reduced abundance of native mammals in sites with feral dogs in the high Andes. Biological Conservation, 193:9-16.
Zeng, K. H. (2014). Using highway culverts as corridors for masked palm civets (Paguma larvata taivana) in Taiwan. Master's Thesis, National Pingtung University of Science and Technology.
Zheng, S. J. (1991) Biological study of formosan gem-faced civet (Paguma larvata taivana). Master's Thesis, National Taiwan Normal University.
Zheng, S. J. & Wang, Y. (1993). The biological study of Formosan gem-faced civet (Paguma larvata taivana). Taipei Zoo Bulletin, 5:59-69.
Zhou, Y., Zhang, J., Slade, E., Zhang, L., Palomares, F., Chen, J., Wang, X., Zhang, S. (2008). Dietary shifts in relation to fruit availability among masked palm civets (Paguma larvata) in central China. Journal of Mammalogy, 89:435-447.
Zhou Y., Newman, C., Palomares, F., Zhang, S., Xie, Z., Macdonald, D. W. (2014). Spatial organization and activity patterns of the masked palm civet (Paguma larvata) in central-south China. Journal of Mammalogy, 95:534-542.

Chapter 2 References
Adams, L.W., VanDruff, L.W., & Luniak, M. (2005). Managing urban habitats and wildlife. Pages 714-739 in C.E. Braun, editor. Techniques for wildlife investigations and management. Sixth edition. The Wildlife Society, Bethesda, Maryland.
Bateman, P. W., & Fleming, P. A. (2012). Big city life: carnivores in urban environments. Journal of Zoology, 287:1-23.
Bozek, C. K., Prange, S., & Gehrt, S. D. (2007). The influence of anthropogenic resources on multi-scale habitat selection by raccoons. Urban Ecosystems, 10(4), 413-425.
Chen, M. T. (2015). Spatial ecology of leopard cats (Prionailurus bengalensis) in a fragmented rural landscape in northwestern Taiwan. Doctoral Thesis, National Pingtung University of Science and Technology.
Chen, M. T., Tewes, M. E., Pei, K. J. C., & Grassman, L. I. (2009). Activity patterns and habitat use of sympatric small carnivores in southern Taiwan. Mammalia, 73:20-26.
Chiang, P. J., Pei, K. J. C., Vaughan, M., R., & Li, C. F. (2012). Niche Relationships of Carnivores in a Subtropical Primary Forest in Southern Taiwan. Zoological Studies, 51(4): 500-511.
Chong, J. L., & Hashimi, H. M. (2021). A survey of civet cats in a semi-urban habitat in Terengganu, Malaysia. Universiti Malaysia Terengganu Journal of Undergraduate Research, 3(3), 87-92.
Colón, C. P. (2002). Ranging behaviour and activity of the Malay civet (Viverra Tangalunga) in a logged and an unlogged forest in Danum Valley, East Malaysia. Journal of Zoology, 257(4), 473-485.
Crooks, K. R. (2002). Relative sensitivities of mammalian carnivores to habitat fragmentation. Conservation Biology, 16(2), 488-502.
Grinder, M. I., & Krausman, P. R. (2001). Home range, habitat use, and nocturnal activity of Coyotes in an urban environment. The Journal of Wildlife Management, 65(4), 887.
Harrison, R. L. (1997). A comparison of gray fox ecology between residential and undeveloped rural landscapes. The Journal of Wildlife Management, 61(1), 112.
Iwama, M., Yamazaki, K., Matsuyama, M., Hoshino, Y., Hisano, M., Newman, C., & Kaneko, Y. (2017). Masked palm civet Paguma larvata summer diet differs between sexes in a suburban area of central Japan. Mammal Study, 42:185-190.
Jennings, A. P., Zubaid, A., & Veron, G. (2009). Ranging behaviour, activity, habitat use, and morphology of the Malay civet (Viverra tangalunga) on Peninsular Malaysia and comparison with studies on Borneo and Sulawesi. Mammalian Biology, 75:437-446.
Johnson, D. H. (1980). The comparison of usage and availability measurements for evaluating resource preference. Ecology, 61(1), 65-71.
Joshi, A. R., David Smith, J. L., & Cuthbert, F. J. (1995). Influence of food distribution and predation pressure on spacing behavior in palm civets. Journal of Mammalogy, 76(4), 1205-1212.
Kase, C., Eguchi, Y., Furuya, M., Uetake, K., & Tanaka, T. (2011). The effect of body size on shapes and sizes of gaps entered by the masked palm civet (Paguma larvata). Mammal Study, 36(3), 127-133.
Kenward, R.E., & Hodder, K.H. (1996). RANGES V: an analysis system for biological location data. Swindon, Natural Environment Research Council, 66pp.
Lair, H. (1987). Estimating the location of the focal center in Red Squirrel Home Ranges. Ecology, 68(4), 1092-1101.
Lowry, H., Lill, A., & Wong, B. B. M. (2013). Behavioural responses of wildlife to urban environments. Biological Reviews, 88:537-549.
Machida, N., Izumisawa, N., Nakamura, T., & Kiryu, K. (1992). Canine distemper virus infection in a masked palm civet (Paguma larvata). Journal of Comparative Pathology, 107:439-443.
Nakashima, Y., Nakabayashi, M., & Sukor, J. Abd. (2013). Space use, habitat selection, and day-beds of the common palm civet (Paradoxurus hermaphroditus) in human-modified habitats in Sabah, Borneo. Journal of Mammalogy, 94(5), 1169-1178.
Ninomiya, H., Ogata, M., & Makino, T. (2003). Notoedric Mange in free‐ranging masked palm civets (Paguma larvata) in Japan. Veterinary Dermatology, 14(6), 339-344.
Prange, S., Gehrt, S. D., & Wiggers, E. P. (2004). Influences of anthropogenic resources on Raccoon (Procyon lotor) movements and spatial distribution. Journal of Mammalogy, 85(3), 483-490.
Pei, K. J. C. (1998). An evaluation of using auto-trigger camera to record activity patterns of wild animals (in Chinese with English abstract). Taiwan Journal of Forestry Science, 13: 317-324.
Rabinowitz, A. R. (1991). Behaviour and movements of sympatric civet species in Huai Kha khaeng wildlife sanctuary, Thailand. Journal of Zoology, 223(2), 281-298.
Reynolds, T. D., & Laundre, J. W. (1990). Time Intervals for estimating pronghorn and Coyote Home Ranges and daily movements. The Journal of Wildlife Management, 54(2), 316.
Riley, S. P. D., Sauvajot, R. M., Fuller, T. K., York, E. C., Kamradt, D. A., Bromley, C. & Wayne, R. K. (2003). Effects of urbanization and habitat fragmentation on bobcats and coyotes in Southern California. Conservation Biology, 17 (2), 566-576.
Santini, L., González‐Suárez, M., Russo, D., Gonzalez‐Voyer, A., Von Hardenberg, A., & Ancillotto, L. (2018). One strategy does not fit all: determinants of urban adaptation in mammals. Ecology Letters, 22:365-376.
Saunders, D. A., & Hobbs, R. J. (1991). Nature conservation 2, the role of corridors. Surrey Beatty & Sons in association with Western Australian Laboratory of the Commonwealth Scientific and Industrial Research Organization, Division of Wildlife Ecology, Western Australian Dept. of Conservation and Land Management.
Seki, Y. & Koganezawa, M. (2010). Reduced home range in winter but an overall large home range of a male masked palm civet: a study in a high-altitude area of Japan. Animal Behaviour and Management, 46(2), 69-76.
Schmidt, K., Nakanishi, N., Okamura, M., Doi, T. & Izawa, M. (2003). Movements and use of home range in the Iriomote cat (Prionailurus bengalensis iriomotensis). Journal of Zoology, 261:273-283.
Smith, A. C., & Schaefer, J. A. (2002). Home-range size and habitat selection by American marten (Martes americana) in Labrador. Canadian Journal of Zoology, 80(9), 1602-1609.
Soulsbury, C. D., & White, P. C. (2015). Human-wildlife interactions in urban areas: A review of conflicts, benefits and opportunities. Wildlife Research, 42(7), 541.
Springer, J. T. (1979). Some Sources of Bias and Sampling Error in Radio Triangulation. The Journal of Wildlife Management, 43(4), pp. 926-935.
Swihart, R. K., & Slade, N. A. (1985). Testing for independence of observations in animal movements. Ecology, 66(4), 1176-1184.
Tigas, L. A., Van Vuren, D. H. & Sauvajot, R. M. (2002). Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment. Biological Conservation 108, 299-306.
Toriyabe, A., Enari, H., Enari, H. S., & Saito, M. U. (2022). Habitat selection by non-native masked palm civets in a Japanese rural landscape, incorporating individual differences. Journal of Mammalogy, 103(3), 608-617.
Toyoda, H., Eguchi, E., Furuya, M., Uetake, K., & Tanaka, T. (2012). Seasonal changes in body size and reproductive status of masked palm civets (Paguma larvata) captured in Saitama prefecture, Japan. Animal Behaviour and Management, 48:57-65.
Wang, H. (1999). Wildlife conservation in rural southeastern China: wildlife harvest and the ecology of sympatric carnivores. Ph.D. dissertation, University of Massachusetts, Amherst.
Widdows, C. D., & Downs, C. T. (2015). A Genet Drive-through: Are large spotted genets using urban areas for “Fast food”? A dietary analysis. Urban Ecosystems, 18(3), 907-920.
Widdows, C. D., Ramesh, T., & Downs, C. T. (2015). Factors affecting the distribution of large spotted genets (Genetta tigrina) in an urban environment in South Africa. Urban Ecosystems, 18(4), 1401-1413.
Wilson, D. E., Mittermeier, R. A., & Cavallini, P. (2009). Handbook of the mammals of the world. Lynx Edicions.
Yang, X. L., Liu, C., Yan, Q., & Cao, Y. O. (2013). Report on mortality due to rabies caused by masked palm civets Paguma larvata. Parasitoses and Infectious Diseases, 11:45-46.
Yao, C.T., Lin, H.J., Chang, S. P., Yao, M.C., Hsu, Y.W. & Tseng, C.W. (2019). Using infrared camera traps to survey activity patterns of mammals in the Hehuan Mountain area (in Chinese with English abstract). Taiwan Journal of Biodiversity, 21(2): 69-82.
Zeng, K. H. (2014). Using highway culverts as corridors for masked palm civets (Paguma larvata taivana) in Taiwan. Master's Thesis, National Pingtung University of Science and Technology.
Zhou Y., Newman, C., Palomares, F., Zhang, S., Xie, Z., Macdonald, D. W. (2014). Spatial organization and activity patterns of the masked palm civet (Paguma larvata) in central-south China. Journal of Mammalogy, 95:534-542.

無法下載圖示 電子全文延後公開
2025/07/01
QR CODE