簡易檢索 / 詳目顯示

研究生: 楊筑方
Chu-Fang Yang
論文名稱: 卡玫基颱風(2008)之數值模擬研究
指導教授: 簡芳菁
Chien, Fang-Ching
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 154
中文關鍵詞: 卡玫基颱風豪雨西南氣流
論文種類: 學術論文
相關次數: 點閱:87下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 卡玫基(Kalmaegi)颱風於2008年7月16至19日間影響台灣,在登陸台灣期間於中南部地區降下超大豪雨,造成嚴重水災及山區土石流。颱風離台後並引進西南氣流而造成豪雨。本研究使用WRF模式模擬卡玫基颱風個案,探討中部地區豪雨之成因,並針對颱風離台後,台灣西南方海域上空大氣環境與西南氣流造成之降雨進行敏感度分析。
    模擬結果顯示,卡玫基為一水氣及風速分布不對稱之颱風,其西南側環流之對流發展明顯較旺盛。在颱風降雨時期,中央山脈的地形效應在對流發展及降雨方面扮演了重要角色。於颱風登陸後,來自颱風低層相對較乾冷之西來氣流受地形阻擋轉為向北至東北運動,並與西北方移入之暖濕對流帶於台灣中部地區輻合。輻合之氣流受到地形抬升,低層水氣舉升凝結,同時與不斷自海峽移入之對流帶於陸地上合併,而使對流系統發展更為旺盛,並在中部山區降下超大豪雨。此外,卡玫基颱風於出海前移速減慢,造成對流系統於中部地區滯留,也是豪雨成災的原因之一。
    本研究也利用FDDA資料同化法,在南海北部上空分別加入濕度及風場之虛擬探空資料,可以改善控制組模擬中西南氣流偏弱之情形,並進一步使台灣西南部地區模擬之降雨較接近於觀測。分析結果顯示,水氣與風場調整之後,於台灣西南外海至西南部地區上空水氣增加,位溫高,為一暖濕、不穩定之大氣環境,並於低層伴隨較強之西南風速。此環境有利於西南氣流伴隨之對流系統在通過台灣西南部外海時持續發展,並藉由台灣西南沿海附近強西南風吹送,移入台灣地區。此外,低層強西南風不僅能將潮濕水氣傳送至台灣西南部地區,並受到地形之抬升,使對流上升運動增強,低層水氣舉升凝結,而造成台灣西南部地區顯著之降雨情形。

    致謝......................................i 摘要.....................................ii 目錄....................................iii 圖表目錄..................................v 第一章 前言................................1 1.1 文獻回顧..............................1 1.2 研究動機..............................4 第二章 個案介紹與觀測資料分析................7 2.1 綜觀天氣圖............................7 2.2 衛星雲圖..............................9 2.3 雷達回波.............................11 2.4 海面風場及地面探空曲線圖...............12 2.5 累積降雨.............................14 2.6 小結................................16 第三章 資料來源與研究方法...................18 3.1 WRF模式簡介..........................18 3.2 資料來源.............................20 3.3 模式設定與實驗設計....................21 第四章 颱風侵台期間之模擬結果分析............24 4.1 模擬結果與觀測校驗.....................24 4.2 台灣中部地區豪雨之分析.................30 4.2.1 氣流分布與水氣傳輸..................30 4.2.2 氣流輻合與對流移動..................32 4.2.3 地形之影響.........................37 4.3 颱風結構之分析........................40 4.3.1 方位角平均之時序變化................40 4.3.2 徑向平均之時序變化..................41 4.4 小結.................................43 第五章 西南氣流降雨時期之模擬結果分析.........45 5.1 模擬結果與觀測校驗.....................45 5.1.1 CR2...............................45 5.1.2 SR1...............................47 5.2 虛擬探空之敏感度分析....................49 5.2.1 模擬結果比較........................50 5.2.2 水氣傳輸...........................53 5.2.3 台灣西南方海域對流之影響.............55 5.2.4 台灣西南方海域之大氣環境.............58 5.3 小結..................................64 第六章 結論與未來展望........................67 參考文獻...................................73 附表.......................................77 附圖.......................................82

    周仲島、于宜強、鳳雷、陳永明、李清勝、鄭明典,2010:莫拉克颱風綜觀環境以及降雨特徵分析,大氣科學,38,21-38。
    陳台琦、唐玉霜、魏志憲、林沛練、廖宇慶、張偉裕、周鑑本、紀博庭、林忠義,2010:莫拉克颱風雷達觀測中尺度雨帶特徵,大氣科學,38,39-61。
    簡芳菁、楊筑方,2009:北行颱風伴隨西南氣流之研究,大氣科學,37,27-48。
    Chan, J. C. L., K. S. Liu, S. E. Ching, and E. S. T. Lai, 2004: Asymmetric distribution of convection associated with tropical cyclones making landfall along the South China coast. Mon. Wea. Rev., 132, 2410–2420.
    Chen, C.-S., Y.-L. Chen, C.-L. Liu, P.-L. Lin, and W.-C. Chen, 2007: Statistics of heavy rainfall occurrences in Taiwan. Wea. Forecasting, 22, 981–1002.
    Cheung, K. K.W., L.-R. Huang, and C.-S. Lee, 2008: Characteristics of rainfall during tropical cyclone periods in Taiwan. Nat. Hazards Earth Syst. Sci., 8, 1463–1474.
    Chiao, S., and Y.-L. Lin, 2003: Numerical modeling of an orographically enhanced precipitation event associated with tropical storm Rachel over Taiwan. Wea. Forecasting, 18, 325–344.
    Chien, F.-C., Y.-C. Liu, and C.-S. Lee, 2008: Heavy rainfall and southwesterly flow after the leaving of Typhoon Mindulle (2004) from Taiwan. J. Meteor. Soc. Japan , 86, 17–41.
    ____, and H.-C. Kuo 2011: On extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res. Atmos. (in press).
    Corbosiero, K., and L., J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 2110–2123.
    ____, and ____, 2003: The relationship between storm motion, vertical wind shear, and convective asymmetries in tropical cyclones. J. Atmos. Sci., 60, 366–376.
    Cressman, G. P., 1959: An operational objective analysis Systems. Mon. Wea. Rev., 87, 367–374.
    Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29(14), Article 1693.
    Lee, C.-S., Y.-C. Liu, and F.-C. Chien, 2008: The secondary low and heavy rainfall associated with Typhoon Mindulle (2004). Mon. Wea. Rev., 136, 1260–1283.
    Lin, Y.-L., S. Chiao, T.-A. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633–660.
    ____, D. B. Ensley, S. Chiao, and C.-Y. Huang, 2002: Orographic influences on rainfall and track deflection associated with the passage of a tropical cyclone. Mon. Wea. Rev., 130, 2929–2950.
    Liu, Y., D.-L. Zhang, and M. K. Yau, 1999: A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 2597–2616.
    Tao, W-K., and J. Simpson, 1993: The Goddard cumulus ensemble model. Part I: Model description. Terr. Atoms. Oceanic Sci., 4, 35–72.
    ____, J. Simpson, D. Baker, S. Braun, M.-D. Chou, B. Ferrier, D. Johnson, A. Khain, S. Lang, B. Lynn, C.-L. Shie, D. Starr, C.-H. Sui, Y. Wang, and P. Wetzel, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. and Atoms. Phys., 82, 97–137.
    Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519–542.
    Wang, S.-Y., and T.-C. Chen, 2008: Measuring east Asian summer monsoon rainfall contributions by different weather systems over Taiwan. J. Appl. Meteor. Climatol., 47, 2068–2080.
    Wang, W., C. Bruyère, M. Duda, J. Dudhia, D. Gill, H.-C. Lin, J. Michalakes, S. Rizvi, and X. Zhang, 2009: ARW Version 3 modeling system user’s guide. http://www.mmm.ucar.edu/wrf/users/docs/user_guide_V3.0
    Wu, C.-C., 2001: Numerical simulation of Typhoon Gladys (1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon. Wea. Rev., 129, 1533–1549.
    ____, and Y.-H. Kuo, 1999: Typhoons affecting Taiwan―Current understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 67–80.
    ____, T.-H. Yen, Y.-H. Kuo, and W. Wang, 2002: Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. Part I: The topographic effect. Wea. Forecasting, 17, 1001–1015.
    ____, K. K. W. Cheung, and Y.-Y. Lo, 2009: Numerical study of the rainfall event due to the interaction of Typhoon Babs (1998) and the northeasterly monsoon. Mon. Wea. Rev., 137, 2049–2064.
    ____, K. K. W. Cheung, J.-H. Chen, and C.-C. Chang, 2010: The impact of tropical storm Paul (1999) on the motion and rainfall associated with tropical storm Rachel (1999) near Taiwan. Mon. Wea. Rev., 138, 1635–1650.
    Yang, M.-J., D.-L. Zhang, and H.-L. Huang, 2008: A modeling study of Typhoon Nari (2001) at landfall. Part I: Topographic effects. J. Atmos. Sci., 65, 3095–3115.
    Zhang, D.-L., Y. Liu, and M. K. Yau, 2002: A multiscale numerical study of Hurricane Andrew (1992). Part V: Inner-Core thermodynamics. Mon. Wea. Rev., 130, 2745–2763.

    下載圖示
    QR CODE