簡易檢索 / 詳目顯示

研究生: 莊易倫
Chuang, Yi-Lun
論文名稱: 尺寸相依銀奈米粒子激發局域性表面電漿共振於氧化鋅奈米柱陣列其發光光譜提升之研究
A study of enhanced UV light-emitting diodes by introducing size-related Ag nanoparticles localized surface plasmons into ZnO nanorod arrays.
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 67
中文關鍵詞: 銀奈米粒子氧化鋅奈米柱發光二極體表面電漿
英文關鍵詞: Ag nanoparticle, n-ZnO nanorod arrays, light-emitting diodes, localized surface plasma
論文種類: 學術論文
相關次數: 點閱:51下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究,利用銀薄膜快速熱退火製程銀奈米粒子,增強氧化鋅光激發光及電激發光之n型氧化鋅奈米柱陣列/p型氮化鎵發光二極體。相較於單純n型氧化鋅奈米柱陣列/p型氮化鎵發光二極體,摻雜尺寸相依大小的銀奈米粒子具有提升氧化鋅奈米柱陣列光激發光和電激發光的特性。n型氧化鋅奈米柱陣列/p型氮化鎵發光二極體的光強度增強提升,結果可歸因於銀奈米粒子激發局域性表面電漿共振在氧化鋅奈米柱陣列所增強的機制。

    Enhanced electroluminescence (EL) of n-ZnO nanorod arrays/p-GaN light-emitting diodes (LEDs) based on an-ZnO/Ag nanoparticle utilizing the excellent properties of Ag nanoparticle. The LEDs using ZnO/Ag nanoparticle composite nanorod with proper size of Ag showed enhanced EL and photoluminescence (PL) with respect to that of LEDs with only pure ZnO nanorod arrays. The results were attributed to Ag nanoparticles localized surface plasma resonance excited in n-ZnO nanorod arrays.

    目錄.......................................................i 致謝.....................................................iii 圖目錄....................................................iv 表目錄...................................................vii 中文摘要................................................viii Abstract..................................................ix 第一章序論.................................................1 1.1 前言...................................................1 1.2 文獻回顧...............................................2 1.3 研究動機與目的.........................................4 第二章實驗原理.............................................5 2.1 氧化鋅的材料特性.......................................5 2.2 水熱法的製備...........................................7 2.3 光激發螢光發光原理(PL, Photo luminescent)..............7 2.4 射頻磁控濺鍍原理.......................................9 2.5 斜向濺鍍原理..........................................11 2.6 X光繞射原理(XRD, X-ray diffraction)...................13 2.7快速熱退火原理(RTA, Rapid thermal annealing)...........15 2.8原子力顯微鏡原理(AFM, Atomic force microscope).........16 2.9掃描式電子顯微鏡原理(SEM, Scanning electron microscope)17 第三章實驗流程與設備......................................22 3.1 元件製備程............................................22 3.2 濺鍍系統..............................................23 3.3 氧化鋅水熱法流程......................................24 3.4 快速熱退火............................................25 3.5 XRD量測...............................................27 3.6 PL量測................................................28 3.7 AFM量測...............................................29 3.8 黑箱量測..............................................29 第四章結果與討論..........................................31 4.1 銀薄膜不同退火溫度縮合銀奈米粒子SEM分析比較...........31 4.2 不同銀薄膜厚度縮合銀奈米粒子SEM分析比較...............32 4.3 不同銀薄膜厚度縮合銀奈米粒子AFM分析比較...............34 4.4 不同銀薄膜厚度縮合銀奈米粒子吸收光譜分析..............36 4.5 不同銀奈米粒子沉積不同厚度氧化鋅種子層SEM比較分析.....37 4.6 不同銀奈米粒子沉積不同厚度氧化鋅種子層AFM比較分析.....41 4.7 有無加入銀奈米粒子氧化鋅奈米柱陣列之拉曼光譜分析......44 4.8 氧化鋅種子層與氧化鋅奈米柱陣列之PL比較分析............45 4.9 不同銀奈米粒子及氧化鋅種子層成長氧化鋅奈米柱陣列PL提升之分........................................................47 4.10 表面粗糙度對 PL Ratio 比較分析.......................49 4.11 有無加入銀奈米粒子氧化鋅奈米柱陣列應用於UV LED之研究.51 4.12 有無加入銀奈米粒子氧化鋅奈米柱陣列應用於UV LED之元件特性分析....................................................53 4.13 有無加入銀奈米粒子氧化鋅奈米柱陣列應用於UV LED之發光特性分析....................................................54 4.14 有無加入銀奈米粒子氧化鋅奈米柱陣列應用於UV LED之發光效率提升分析................................................57 4.15有無加入銀奈米粒子氧化鋅奈米柱陣列應用於UV LED之EL比較分析........................................................60 4.16 EL能帶圖.............................................61 第五章結論................................................65 第六章參考文獻............................................66

    [1] H. L. Hartnagel, A. L. Dawar, A. K. Jain and C. Jagadish,“Semiconducting Transparent Thin Films,”published by Institute of Physics Publication,p. 17, 1995.
    [2] D.P. Nortona, Y.W.Heoa, M.P. Ivilla, K. Ipa, S.J. Peartona, M.F. Chisholmb, T. Steinerc, “ZnO-growth, doping & processing,”Mater. Today, vol. 7, p. 34, 2004.
    [3] Hamad, Omima, et al. "Effect of thermal treatment in oxygen, nitrogen, and air atmospheres on the electrical transport properties of zinc oxide thin films." Thin Solid Films 489.1 (2005): 303-309.
    [4] 蔡來福,“以電漿輔助化學氣相沉積法室溫成長氧化鋅薄膜之研究”,國立中央大學光電科學研究所碩士論文,2002。
    [5] D. J. Leary, J. O. Barnes, and A. G. Jordan,“Calculation of Carrier Concentration in Polycrystalline Films as a Function of Surface Acceptor State Density: Application for ZnO Gas Sensors,”J. Electrochem. Soc., vol.129,p.1382,1982.
    [6] S. Krishnamoorthy and A. A. Iliadis, “Properties of high sensitivity ZnO surface acoustic wave sensors on SiO2(100) Si substrates”, Solid−State Electronics, 52 (2008) 1710−1716.
    [7] A. Al−Hajry, A. Umar, Y. B. Hahn, and D. H. Kim, “Growth,properties and dye−sensitized solar cells–applications of ZnO nanorodsgrown by low−temperature solution process”, Superlattices and Microstructures, 45 (6) (2009) 529−534.
    [8] C. D. Lokhande, P. M. Gondkar, R. S. Mane,V. R. Shinde, and S. H. Han, “CBD grown ZnO−based gas sensors and dye−sensitized solar cells”, Journal of Alloys and Compounds, 475 (2009) 304−311.
    [9] R. B. H. Tahar, “Structural and electrical properties of aluminumDdoped zinc oxide films prepared by sol–gel process”, Journal of the European Ceramic Society, 25 (2005) 3301−3306.
    [10] 謝嘉民,賴一凡,林永昌,枋志堯,“光激發螢光量測的原理、架構及應用”,奈米通訊,第十二卷,第二期,第28-39頁,2005。
    [11] Bernard Valeur,Mário Nuno Berberan-Santos,“Molecular Fluorescence: Principles and Applications”.
    [12] http://cnx.org/content/m34656/latest/Object%2013c.jpg
    [13] Rigaku Mechatronics Co./Applications/Sputtering systems, 2011/07/09.

    [14] T. G. Knorr and R. W. Hoffman,“Dependence of Geometric Anisotropy in Thin Iron Films,”Physical Review, vol. 113, No. 4, pp. 1039-1046, 1959.
    [15] D. O. Smith, “Anisotropy in Permalloy Films,” J. Appl. Phys., vol. 30, pp. 264S-265S, 1959.
    [16] Advances in Nanotechnology Research and Application: 2012 Edition
    [17] https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcQ2sq-Pb6AEruKAMOfW0sXcqDXb_EHm96RYZGXq6-eRG-PkSma0qg
    [18] 林麗娟,“X光繞射原理及其應用”,工業材料,第八十六期,第100-109頁,1994。
    [19] http://zh.wikipedia.org/wiki/%E5%8E%9F%E5%AD%90%E5%8A%9B%E6%98%BE%E5%BE%AE%E9%95%9C#.E5.B7.A5.E4.BD.9C.E5.8E.9F.E7.90.86
    [20] C. Suryanarayana ,M. Grant Norton,“X-Ray Diffraction: A Practical Approach”,1998.
    [21] Fred Roozeboom , “Rapid Thermal and Other Short-time Processing Technologies”,2000.
    [22] David Hodul, Jeffrey C. Gelpey, Martin L. Green, Thomas E. Seidel,Cambridge University Press, Rapid Thermal Annealing/Chemical Vapor Deposition and Integrated Processing:第 146 卷,2014.
    [23] Pier Carlo Braga ,Davide Ricci, “Atomic Force Microscopy: Biomedical Methods and Applications”,2004.
    [24] Greg Haugstad ,“ Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications”,2012.
    [25] http://web1.knvs.tp.edu.tw/AFM/ch4.htm
    [26] Ludwig Reimer, “Scanning Electron Microscopy: Physics of Image Formation and Microanalysis”,1998.
    [27] Anjam Khursheed, “Scanning Electron Microscope Optics and Spectrometers”,2011.
    [28] 林聖凱。2005。以微波電漿火炬製備可見光化光觸媒之研究。中原大學化學工程系碩士論文。桃園。
    [29] 黃惠忠。2004。奈米材料分析。滄海書局。台中。
    [30] 陳義信。2001。冷壁式有機金屬化學氣相沈積法製備二氧化銥薄膜及其特性分析。國立台灣科技大學工程技術研究所碩士論文。台北。
    [31] 趙國興。2002。雷射拉曼光譜對鈀、銠與硫酸鈰反應之研究。中國文化大學應用化學研究所碩士論文。台北。

    下載圖示
    QR CODE