簡易檢索 / 詳目顯示

研究生: 羅阡豪
Luo, Qian-Hao
論文名稱: Fundamental Solutions on the Heisenberg Group
Fundamental Solutions on the Heisenberg Group
指導教授: 陳瑞堂
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 32
中文關鍵詞: CR manifoldHeisenberg groupfundamental solution
英文關鍵詞: CR manifold, Heisenberg group, fundamental solution
DOI URL: http://doi.org/10.6345/NTNU201900006
論文種類: 學術論文
相關次數: 點閱:158下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無中文摘要

    This paper is an expository note mainly concentrated on section 2,4,5,6 and 7 of Folland and Stein's work. We first review some definitions and properties of CR manifolds, ∂ ̅_b complex and Heisenberg groups. We then derive the explicit form of the Laplacian □_b and deduce the problem of □_b to the operator L_α. The major part of the paper is to find the fundamental solutions for L_α on the Heisenberg group and to compute the constant c_α. Last we analyze the solutions of L_α f=g to finish the paper.

    1 An introduction to CR manifolds 2 2 An introduction to Heisenberg groups 3 3 Computation of @b and b 9 4 Construction of the fundamental solutions 12 5 Solutions of L f = g 27 References 32

    [1] O. Calin, D.-C. Chang, P. Greiner, Geometric analysis on the Heisenberg group and its generalizations.
    AMS/IP Studies in Advanced Mathematics, 40. American Mathematical Society, Providence, RI; Inter-national Press, Somerville, MA, 2007. x+244 pp. ISBN: 978-0-8218-4319-2; 0-8218-4319-2 .

    [2] S.-C. Chen, M.-C. Shaw, Partial Di¤erential Equations in Several Complex Variables. AMS/IP Studies in Advanced Mathematics, 19. American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001. xii+380 pp. ISBN: 0-8218-1062-6 (Reviewer: Harold P. Boas) 32Wxx (32-02 35A20 35N15 35S05 47N20)

    [3] G. B. Folland, A fundamental solution for a subelliptic operator. Bull. Amer. Math. Soc. 79 (1973),373–376.

    [4] G. B. Folland, E. M. Stein, Estimates for the @b Complex and Analysis on the Heisenberg Group. Comm. Pure Appl. Math. 27 (1974), 429–522. (Reviewer: S. G. Gindikin) 35N15 (22E30 32K15 47G05)

    [5] Sorin Dragomir, Giuseppe Tomassini, Di¤erential geometry and analysis on CR manifolds. Progress in
    Mathematics, 246. Birkhäuser Boston, Inc., Boston, MA, 2006. xvi+487 pp. ISBN: 978-0-8176-4388-1; 0-8176-4388-5

    [6] Loring W. Tu, Differential geometry. Connections, curvature, and characteristic classes. Graduate Texts in Mathematics, 275. Springer, Cham, 2017. xvi+346 pp. ISBN: 978-3-319-55082-4; 978-3-319-55084-8

    [7] E. M. Stein, R. Shakarchi, Complex analysis. Princeton Lectures in Analysis, 2. Princeton University Press, Princeton, NJ, 2003. xviii+379 pp. ISBN: 0-691-11385-8

    [8] E. M. Stein, R. Shakarchi, Functional analysis. Introduction to further topics in analysis. Princeton Lectures in Analysis, 4. Princeton University Press, Princeton, NJ, 2011. xviii+423 pp. ISBN: 978-0-691-11387-6

    下載圖示
    QR CODE