簡易檢索 / 詳目顯示

研究生: 張平
Ping Chang
論文名稱: 有機氣體石英壓電晶體感測器的研製與應用
Preparation and Application of Piezoelectric Quartz Crystal Organic Gas Sensors
指導教授: 施正雄
Shih, Jeng-Shong
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 153
中文關鍵詞: 感測器石英壓電晶體主成份分析類神經網路
英文關鍵詞: ANN
論文種類: 學術論文
相關次數: 點閱:267下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石英壓電晶體基於它的共振頻率對於對於晶體表面的質量改變具有非常好的靈敏度,因此將特定的化學物質塗佈在其電極表面作為吸附劑來偵測特定的化學物種,可設計成相當好的化學感測器。
    在本論文中,Ru(III)/cryptand 首先被置備來塗佈於晶體表面上,用以偵測非極性的有機氣體。由於非極性的有機氣體因為若僅靠凡得瓦力作為吸附的作用力,將使吸附型的感測器靈敏度不佳且選擇性太差,若使用Ru(III)/cryptand作為塗佈物質則可增進感測靈敏度,且對單鍵、雙鍵、三鍵的的非極性氣體具有選擇性,其訊號強度依序為炔類>烯類>烷類。
    以石英壓電晶體做為換能器最大的優點在於可隨意的更換塗佈物種而達到偵測各種分析物之目的。多頻道的化學感測器,對於選擇性不佳的情形能夠有相當程度的改善。本研究中利用主成份分析來幫助研究者在眾多塗佈物種中選擇最適合偵測目的的物質來塗佈。十四種塗佈物質被考慮用以偵測常見的有機氣體,其中 polystyrene、polyvinyl alcohol、stearic acid、fullerene、polyethylene adipate和polyvinyl pyrrolidone等塗佈物質在主成份分析中具有代表性被選擇,利用主成份分析法中的成份分數,可將變異量集中在少數的維度中,藉以辨別不同的分析物,例如有機酸、胺類化合物、醇類化合物及芳香族化合物。
    類神經網路發展應用也是本研究的重點之一。利用倒傳遞類神經網路,可以幫助來辨識不同氣體分子,而且不經過人為判斷更顯得客觀而易於應用於警報系統。利用訓練組數據,經過網路的訓練學習過程,能夠找到網路參數來作辨識工作。利用多頻道石英壓電感測系統配合類神經網路除了能夠分辨不同的分析氣體之外,能更進一步的得到一個混合氣體的樣品中,可能含有的氣體成份,例如有機酸、胺類化合物、醇類化合物及芳香族化合物等。
    經由類神經網路分辨氣體物種後,複回歸分析被應用在定量上,很顯然的,簡單回歸是無法計算混合有機氣體中個別的氣體濃度的,利用多頻道石英壓電偵測系統的感測訊號,配合類神經網路的辨別,最後加上複回歸做濃度的分析,可以直接偵測到混合氣體中目標氣體的濃度,誤差約在5~20﹪。
    整個的實驗系統包含記錄多頻道頻率的即時多頻道系統都是在實驗室自製,可由個人電腦直接控制,直接監測頻率的變化。控制程式及倒傳遞類神經網路的程式則自行以Qbasic程式語言撰寫。主成份分析及複回歸分析則以商用統計軟體SAS計算。

    In this study, piezoelectric quartz crystal detection system with a home-made computer interface was prepared and applied as a gas chromatographic detector. The oscillating frequency of quartz crystal decreases due to the adsorption of organic molecules on the coating. The home-made computer interface includes the digital counting system Altera and Intell-8255 data processing system. Software was written to control the interface and data acquisition.
    The Cryptand/Ru(III) coated piezoelectric quartz crystal detection system demonstrated good selectivity and high sensitivity for olefins. The frequency shifts were in the order: 3-hexyne > 1-hexyne > cis-2-hexene > trans-2-hexene > hexane. It means those alkynes seem greater adsorption on Cryptand/Ru than alkenes and alkanes. Effects of temperature and interference of water were also investigated and discussed.
    A multi-channel piezoelectric quartz crystal detection system was prepared and employed in the present study to detect various organic molecules from a flow system. By application of principal component analysis (PCA) to a data set containing piezoelectric quartz crystal frequency shifts measured in responses to detect adsorbed on special coating materials, a reduced set of orthogonal factors had been defined to provide maximum discriminating information for all analytes of interest. The data set obtained from 14 piezoelectric crystal sensors for 30 analytes and the first four factors of the reduced set explained almost 90.3% of the variation. Six interested coating materials were selected after compared the correlation between the 14 coating materials and the four factors. Propylamine, Formic acid, Propanol and Toluene can be distinguished clearly by the six-channel piezoelectric detection system without considering the retention times of the analytes.
    Back propagation neural network (BPN) was used to distinguish the species in the organic mixture and multivariate linear regression analysis (MLR) was used to compute the concentration of the species. A six-channel piezoelectric sensor detecting organic molecules in static system was investigated and discussed. Amine, carboxylic acid, alcohol and aromatic molecules can easily distinguished by this system with back propagation neural network. Furthermore, the concentrations of the organic compounds were computed with about 5-20% error by multivariate linear regression analysis (MLR). Organic Mixture with amine, carboxylic acid, alcohol and aromatic molecules detecting by this way also had good qualitative and quantitative results. To have better distinguishability, changing the fault-tolerance in back propagation neural network was also investigated and discussed in this study.

    目 錄 目 錄 圖表目錄 中文摘要 英文摘要Abstract 第一章 緒論 1-1石英壓電晶體化學感測器基本原理 1-1-1壓電性與壓電效應 1-1-2 石英振盪器 1-1-3 AT-cut石英振盪器的特性 1-1-4 石英微量天平(QCM) 1-2石英壓電晶體在分析化學領域上的應用 1-2-1 緣起 1-2-2 石英壓電晶體在氣相層析上的應用 1-2-3 石英壓電晶體在液相上的應用 1-2-4 石英壓電晶體在生物感測器上的應用 1-2-5 電化學石英微量天平(EQCM) 1-3主成份分析 1-3-1 基本原理 1-3-2 主成份分析之應用 1-3-3 成份分數 1-4類神經網路 1-4-1 神經元 1-4-2 M-P模型與準線性模型 1-4-3 倒傳遞類神經網路 1-4-4 網路演算法 第二章 非極性石英壓電有機氣體感測器 2-1 前言 2-2 計頻器 2-2-1 D型正反器 2-2-2 振盪線路 2-2-3 自製24bit計頻器 2-2-4 電腦控制界面程式與8255卡 2-3 實驗部份 2-3-1 石英振盪晶體 2-3-2 表面塗佈液的配製 2-3-3 表面塗佈法 2-4 結果與討論 2-4-1 塗佈膜種類對cis-2-hexene吸附 能力之比較 2-4-2表面塗佈量對訊號的影響 2-4-3 烷、烯、炔在感測系統之訊號比較 2-4-4 烯、炔化合物取代基對系統訊號的影響 2-4-5溫度效應 2-4-6 水氣對訊號的影響 2-4-7 Ru(III)/cryptand氣相層析儀偵測器 2-5 結論 第三章 多頻道石英壓電晶體感測器 主成份分析 3-1 前言 3-2 實驗部份 3-2-1 藥品 3-2-2 硬體裝置 3-2-3 SAS 統計軟體 3-2-4 實驗的控制與數據的處理 3-3 結果與討論 3-3-1選擇多頻道石英壓電偵測器的塗佈物質 3-3-2 成份分數辨識不同有機分子 3-3-3 雷達圖辨識不同有機分子 3-4 結論 第四章 多頻道石英壓電晶體感測器 倒傳遞類神經網路 4-1 前言 4-2 建立倒傳遞類神經網路 4-3 混合有機氣體的感測 4-3-1 前言 4-3-3 有機混和氣體的定性與定量 4-3-4 結論 第五章 總結 參考資料

    1. Y. Okahata, and T. Tsuruta, Langmuir, 1988, 4, 1373-1375
    2. K. Sode, and Y. Kameda, Anal. Chem. Acta, 1980, 220, 251-255
    3. M. R. Deakin, and O. R. Melroy, Electrochem. Soc., 1989, 136(2), 349-352
    4. U. J. Krull, R. S. Brown, Analyst, 1989, 114, 33-40
    5. H. Muramatsu, Anal. Chem. Acta, 1989, 225, 339-480
    6. S. M. Chang, and B. Ebert, J. Biotechnology, 1990, 16, 211-220
    7. Y. Okahata, and H. Ebato, Anal. Chem., 1991, 63, 203
    8. K. L. Prime, and G. M. Whitesides, Science, 1991, 25, 1164-1167
    9. C. Pale-Grosdemange, and E. S. Simon, J. Am. Chem. Soc., 1991, 223, 12-20
    10. H. Muramatsu, J. M. Dicks, E. Tamiya and Isao Karube, Anal. Chem., 1987, 59, 2760-2763
    11. L. Bertilsson, and B. Liedberg, Langmuir, 1993, 9, 141-149
    12. A. K. Bhatia, and J. L. Teixeira1993, 208, 197-205
    13. M. Eray, N. S. Dogan, and L. Liu, Biosensors & Bioelectronics, 1994, 9, 343-351
    14. S. V. Matveev, Biosensors & Bioelectronics, 1994, 9, 333-336
    15. M. Rosa, A. Morana, and A. Riccio, Biosensors & Bioelectronics, 1994, 9, 669-675
    16. N. J. Geddes, and A. S. Martin, J. Immunological Methods, 1994, 175, 149-160
    17. K. Hayashi, and K. Toko Sensors and Actuators B, 1995, 23, 55-61
    18. Y. Dong, and G. Feng, Sensor and Actuators B, 1995, 24-25, 62-64
    19. C. Koblinger, and E. Uttenthaler, Sensor and Actuators B, 1995, 24-25, 107-112
    20. K. C. Grabar, R. G. Freeman, Anal. Chem., 1995, 67, 735-743
    21. D. P. Nilolelis, and C. G. Siontorou, Anal. Chem., 1995, 67, 936-944
    22. W. Gopel, Biosensor & Bioelectyonics, 1995, 10, 35-39
    23. Richard P. Wayne, "Chemical Instumentation", Oxford University Press, 1994
    24. C. Lu and A. W. Czanderna, "Applications of Pizeoelectric Quartz Crystal Microbalance", Elsevier Science, New York, 1984
    25. 金樹楨, "晶體之結構與性質", 國立編譯館, 1990
    26. 吳朗, "電子陶瓷-壓電", 全欣科技圖書, 1994
    27. 吳朗, "感測與轉換-原理,元件與應用", 全欣科技圖書, 1994
    28. T. Ikeda, "Fundamentals of piezoelectricy", Oxford. Sci. Publ., 1990
    29. L. L. Levenson, Nuovo Cimento, suppl. 2, Ser. I, 1967, 5, 231
    30. M. R. Deakin and D. A. Buttry, Anal. Chem, 1989, 61, 181
    31. D. A. Buttry and M. D. Word, Chem. Rev., 1992, 92, 1355
    32. 張平, 碩士論文, 國立台灣師範大學化學研究所, 1996
    33. W. H. King, Anal. Chem., 1964, 36, 1735
    34. M. H. Mo and G. G. Guilbault, Anal. Chem., 1980, 52, 1489
    35. U. Tomita and and G. G. Guilbault, Anal. Chem., 1980, 52, 1484
    36. M. H. Mo and G. G. Guilbault, Anal. Chem., 1983, 55, 1830
    37. A. A. Suleiman and G. G. Guilbault, Anal. Chem., 1991, 38, 541
    38. F. W. Karasek and K. R. Gibbins, J. Chromatogr, 1871, 9, 535
    39. F. W. Karasek, P. Guy, H. H. Hill and J. M. Tiernay, J. Chromatogr, 1976, 124, 179
    40. F. W. Karasek and J. M. Tiernay, J. Chromatogr, 1974, 89, 31
    41. Mandelis and Christofides. "Physis. Chemistry and Technology of Solid State Gas Sensor Devices", John Wiley & Sons, New York, 1993
    42. M. T. Gomes, T. A. Rocha, Armando C. Duarte and Joao P. Oliveira, Anal. Chem., 1996, 68, 1561
    43. H. Wei, L. Wang, X. Wanli, B. Zhang, C. Liu and J. Feng, Anal. Chem., 1887, 69, 699
    44. M. T. S. R. Gomes, T. A. Rocha, A. C. Duarte, J. A. B. P. Oliveira, Anal. Chim. Acta., 1996, 335, 235
    45. L. C. Brousseau, III, and T.E. Mallouk, Anal Chem., 1997, 69, 679
    46. G. C. Silver, J. Sun, C. Nguyyen, A. S. Boutorine, E. Bisagni and C. Helene, J. Am. Chem. Soc., 1997, 119, 263
    47. M. Thompson, A L. Kipling and W. C. Duncan-Hewitt, Analyst, 1991, 116, 881
    48. S. Bruckenstein, Electrochimica Acta, 1985, 80, 1295
    49. W. W. Schulz and W. H. King, J. Chromatogy, Sci., 1973, 11, 343
    50. P. L. Konash and G. J. Bastannas, Anal. Chem., 1980, 52, 1929
    51. J. M. Charlesworth, Anal. Chem., 1990, 62, 76
    52. T. Nomura and M. Okuhara, Anal. Chim. Acta, 1982, 142, 281
    53. S. Kurosawa, E. Tawara-Knodo and N. Knodo, Anal. Chim. Acta, 1997, 337, 1
    54. 免疫檢驗試劑與生物感測技術應用訓練班講義, DBC-BC-1996-023
    55. K. Nakanishi, H. Muguruma and I. Karube, Anal. Chem., 1996, 68, 1695
    56. 吳宗正, 生物技術/醫藥產業透析, 1993, 2, 8
    57. Y. Okahata, G. En-na and H. Ehato, Anal. Cham., 1990, 62, 1431
    58. T. Nomura and K. Tsung, Anal. Chim. Acta, 1985, 182, 258
    59. T. Nomura and M. Sakai, Anal. Chim, Acta., 1986, 183, 301
    60. D. A. buttry, "In Electroanalytical Chemistry. A Series of Advances" A. J. Bard Ed., Marcel Dekker: New York, 1991
    61. M. R. Deakin and O. Melroy, J. Electroanal. Chem., 1988, 239, 321
    62. N. P. R. Andersen, P. Holst-Hansen and D. Britz, Anal. Chim. Acta, 1996, 329, 253
    63. K. Pearson, "On Lines and Planes of Closet Fit of System of Points in Space", Philosophy Magazine, 1901, 6, 559-572
    64. H. Hotelling, "Analysis of a Complex of Statistical Variables into Principal Components", Journal of Educational Psychology, 1933, 24, 417-441
    65. H. Hotelling, "Relations Between Two Sets of Variates", Biometrika, 1936, 28, 321-337
    66. 林清山, 多變項分析統計法, 東華書局, 1986
    67. H. Nanto, S. Tsubakino, M. Habara, K. Kondo, T. Morita, Y. Douguchi, H. Nakazumi, R. I. Waite, Sensor and Actuators B, 1996, 34, 312-316
    68. H. Nanto, M. Habara, K. Kondo, Y. Douguchi, H. Nakazumi, Sensor and Actuators B, 1996, 35-36, 183-186
    69. O. Jakubowicz, and S. Ramanujam, IJCNN-90-Wash., II, 611-615, 1990
    70. B. J. Kagle, IJCNN-90, II, 197-202, 1990
    71. J. C. Hoskins, IJCNN-89, I, 81-86, 1989
    72. T. Sorsa, IEEE Trans. On System, Man, and Cybernetics, 21, 815-825, 1991
    73. D. A. Brown, Micro-computers in Civil Engineering, 6, 87-97, 1991
    74. N. Gagarin, J. of Computing in Civil Engineering, 8(2), 197-200, 1994
    75. F. C. Lin and M. Lin, AI Expert, Feb 1993, 36-41
    76. N. Baba and M. Kozaki, IJCNN-92, I, 371-377, 1992
    77. J. Kean, PC AI, Sep/Oct 1993, 45-47
    78. C-H. Chu, and D. Widjaja, Decision Support Systems, 12, 13-24, 1994
    79. P. Baldi, and Y. Chauvin, Neural Computation, 5, 402-418, 1993
    80. A. Namphol, IJCNN-91, I, 695-700, 1991
    81. 中國科學技術大學生物醫學工程跨系委員會, 神經網路及其應用, 儒林出版社, 1993
    82. 王伯揚, 神經電生理學, 北京:人民教育出版社, 1982
    83. F. Rosenblatt, Cornell Aernaut, Lab, Rept., 1957, 85-460-1
    84. 葉怡成, 應用類神經網路, 儒林出版社, 1997
    85. 鍾富昭, PIC16C71單晶片微電腦, 全華科技1995
    86. 黃連進, PC多功能實驗卡實驗手冊, 第三波, 1987
    87. 鄭國順, 數位邏輯, 三民書局, 1984
    88. Altera Corpporation, MAX+PLUS II Getting started Ver. 5.0, July 1994

    下載圖示
    QR CODE